Рекурсивные функции

Эта модель рассматривает алгоритм как способ формирования одних вычислимых функций из других, т.е. одни функции конструктивно определяются из других.

Понятие простейших функций

Числовые функции, значение которых можно установить посредством некоторого алгоритма, называются вычислимыми функциями.

Для того чтобы описать класс функций с помощью рекурсивных определений, рассмотрим набор простейших функций:

- 1) $Z(x_1, x_2, ..., x_n) = 0$ нуль-функция, которая определена для всех неотрицательных значений аргумента;
- s(x) = x+1 функция непосредственного следования, также определенная для всех целых неотрицательных значений своего аргумента;
- 3) $I_m^n(x_1, x_2, \ldots, x_m, \ldots, x_n) = x_m$ функция выбора (тождества), повторяющая значения своих аргументов.

Используя простейшие функции в качестве исходных функций, можно с помощью небольшого числа общих конструктивных приемов строить сложные арифметические функции. В теории рекурсивных функций особо важное значение имеют три операции: суперпозиции, примитивной рекурсии и минимизации.

Эти операторы сохраняют вычислимость.

Все элементарные функции - всюду определенные и алгоритмически вычислимые.

Оператор суперпозиции

Оператором суперпозиции S называется подстановка в функцию от m переменных m функций от n одних и тех же переменных. Она дает новую функцию от n переменных. Например, из функций $f(x_1, x_2, ..., x_m)$, $f_1(x_1, x_2, ..., x_n)$, $f_2(x_1, x_2, ..., x_n)$, ..., $f_m(x_1, x_2, ..., x_n)$ можно получить новую функцию: $S^{m+1}(f, f_1, f_2, ..., f_m) = g(x_1, x_2, ..., x_n) = f(f_1(x_1, x_2, ..., x_n), f_2(x_1, x_2, ..., x_n), ..., f_m(x_1, ..., x_n))$. (1)

В операции суперпозиции S^{m+1} индекс сверху указывает на число функций.

Таким образом, при помощи оператора суперпозиции и функции выбора можно выразить любую подстановку функции в функцию.

Свойства операции суперпозиции.

- 1. Операция суперпозиции сохраняет свойство всюду определенности функций, т.е. если $f(x_1, x_2, ..., x_m)$, $f_1(x_1, x_2, ..., x_n)$, $f_2(x_1, x_2, ..., x_n)$, ..., $f_m(x_1, x_2, ..., x_n)$ всюду определены, то и $g(x_1, x_2, ..., x_n)$ всюду определена.
- Операция суперпозиции сохраняет свойство алгоритмической вычислимости функций.

Примеры

Суперпозиция функций:

$$f(x) = 0$$
 и $g(x) = x+1$ получим функцию: $h(x) = g(f(x)) = 0 + 1 = 1$

При суперпозиции функции g(x) с этой же функцией получим функцию h(x) = g(g(x)) = x + 2.

Используя подстановку и функции тождества, можно переставлять и отождествлять аргументы в функции:

$$f(x_2, x_1, x_3, ..., x_n) = f(I_2^2(x_1, x_2), I_1^2(x_1, x_2), x_3, ..., x_n);$$

$$f(x_1, x_1, x_3, ..., x_n) = f(I_1^2(x_1, x_2), I_1^2(x_1, x_2), x_3, ..., x_n).$$

Таким образом, если заданы функции тождества и операторы суперпозиции, то можно считать заданными всевозможные операторы подстановки функций в функции, а также переименования, перестановки и отождествления переменных.

Оператор примитивной рекурсии

Оператор примитивной рекурсии задается следующим образом:

Рекурсия ведется по одному аргументу, все остальные считаются параметрами. Известны две функции: $g(x_1, x_2, ..., x_n)$ и $h(x_1, x_2, ..., x_n, y, z)$.

Определение. Говорят, что функция $f(x_1,...,x_n,y)$ получена из функцией $g(x_1,...,x_n)$ и $h(x_1,...,x_n,y,z)$ с помощью операции примитивной рекурсии, если выполняются следующие равенства:

$$f(x_1,...,x_n,0) = g(x_1,...,x_n)$$

$$f(x_1,...,x_n,y+1) = h(x_1,...,x_n,y,f(x_1,...,x_n,y)).$$

Это определение имеет смысл, когда $n \neq 0$, при этом записывается

$$f(x_1,...,x_n,y) = R(g(x_1,...,x_n),h(x_1,...,x_n,y,z))$$

или сокращенно

$$f = R(g,h),$$

где *R*—означает операции примитивной рекурсии.

В нуле функция f равна функции g, а в некоторой точке y+1 она определяется через известную функцию h и значение этой же функции в предыдущей точке.

Оператор примитивной рекурсии R_n позволяет определить (n+1) - местную функцию f по двум заданным функциям, одна из которых является n- местной функцией g, а другая (n+2) - местной функцией h.

Приведенная пара равенств называется схемой примитивной рекурсии.

Оператор примитивной рекурсии

Основные свойства операции примитивной рекурсии.

Операция примитивной рекурсии, так же как и операция суперпозиции, сохраняет свойство всюду определенности и алгоритмической вычислимости. т.е если $g(x_1,...,x_n)$ и $h(x_1,...x_n,y,z)$ всюду определенные и вычислимые функции, то $f(x_1,...,x_n,y)$ тоже будет всюду определенная функция, где f=R(g,h).

Всякая ПРФ является всюду определенной функцией. Всякая ПРФ является алгоритмически вычислимой.

Оператор примитивной рекурсии

- Функция называется примитивно рекурсивной, если она является элементарной или может быть получена из элементарных функций с помощью конечного числа применений операторов тождества, суперпозиции и примитивной рекурсии.
- Если некоторые функции являются примитивно-рекурсивными, то в результате применения к ним операторов суперпозиции или примитивной рекурсии можно получить новые примитивнорекурсивные функции.
- Существует три возможности доказательства того, что функция является примитивно-рекурсивной:
- а) показать, что заданная функция является простейшей;
- б) показать, что заданная функция построена с помощью оператора суперпозиции;
- в) показать, что заданная функция построена с помощью оператора примитивной рекурсии.

Примеры доказательства вычислимости функций

1. Функция – константа

$$f(x) = m \quad s(s(s...s(Z(x))...)) \quad m-pa3$$

2. Сложение

Доказательство:

- f(x,0)=g(x)=x=I(x);
- $f(x,y+1) = h(x,y,z) = h(x,y,f(x,y)) = s(I_3^3(x,y,f(x,y)))$

$$+^2 = R(I_1^1, [s^1; I_3^3]).$$

3. Умножение

- f(x,0)=g(x)=0=Z(x);
- $f(x,y+1) = h(x,y,z) = h(x,y,f(x,y)) = x+z = I_3^1(x,y,f(x,y)) + I_3^3(x,y,f(x,y))$ $x^2 = R(Z,[+;I_3^3,I_1^3])$
- 4. Симметрическая разность (абсолютная величина разности) $x \div y = \begin{cases} x y, \text{ если } x \ge y \\ 0, \text{ если } x < y \end{cases}$

Одноместная функция усеченного вычитания единицы определяется рек
$$f(0) = 0 \div 1 = 0$$

$$f(x+1) = x+1 \div 1 = x$$

$$\div 1 = R(Z, I_1^2)$$

$$f(x,0) = x \div 0 = x$$

 $f(x,y+1) = x \div (y+1) = (x \div y) \div 1 = f(x,y) \div 1$
Доказательство:
 $f(x,0) = g(x) = x = I(x)$;
 $f(x,y+1) = I_3^3(x,y,f(x,y)) \div 1$
 $\div^2 = R(I_1^1, [\div 1^1 I_3^3])$

Операции конечного суммирования и конечного произведения

Определение. Говорят, что функция $\sigma(x_1,...,x_n,z)$ получена из функции $g(x_1,...,x_n,y)$ с применением операции конечного суммирования, если для любого набора переменных $(x_1,...,x_n,z)$ выполняется следующее равенство:

$$\sigma(x_1, \dots, x_n, z) = g(x_1, \dots, x_n, 0) + g(x_1, \dots, x_n, 1) + \dots + g(x_1, \dots, x_n, z) =$$

$$= \sum_{t=0}^{z} g(x_1, \dots, x_n, t)$$
(1)

Определение. Говорят, что функция $\delta(x_1,...,x_n,z)$ получена из функции $g(x_1,...,x_n,y)$ с применением операции конечного произведения, если для любого набора переменных $(x_1,...,x_n,z)$ выполняется следующее равенство:

$$\delta(x_1, \dots, x_n, z) = g(x_1, \dots, x_n, 0) \cdot g(x_1, \dots, x_n, 1) \cdot \dots \cdot g(x_1, \dots, x_n, z) =$$

$$= \prod_{t=0}^{z} g(x_1, \dots, x_n, t)$$
(2)

Теорема 1. Операции конечного суммирования и конечного произведения сохраняют свойство примитивной рекурсивности функции.

Оператор минимизации

Операция минимизации .Пусть задана n -местная функция $g(x_1,...,x_{n-1},x_n)$ Зафиксируем набор $(x_1,...,x_{n-1},x_n)$ и рассмотрим уравнение относительно у :

$$g(x_1,...,x_{n-1},y)=x_n$$
 (*)

Будем решать данное уравнение, вычисляя последовательно

$$g(x_1,...,x_{n-1},0)$$
. $g(x_1,...,x_{n-1},1)$, $g(x_1,...,x_{n-1},2)$ и сравнивая с

 \mathcal{X}_n . Наименьшее \mathcal{Y} , для которого выполнено(*) обозначим

$$\mu_{y} = (g(x_1,...,x_{n-1},y) = x_n)$$

При этом считаем, что y определено, если $g(x_1,...,x_{n-1},z)$ определено при всех $z \le y$. В противном случае считаем, что y неопределено.

Скажем, что функция $f_n^h(x_1,x_2, ..., x_n)$ получена с помощью оператора минимизации μ -оператора) из функции $g^{n+1}(x_1, x_2, ..., x_n, y)$, если $f_n^h(x_1,x_2, ..., x_n)$ определена и равна у тогда и только тогда, когда все значения $g^{n+1}(x_1,..., x_n, y)$, $g^{n+1}(x_1,..., x_n, y-1)$ определены и не равны 0, а $g^{n+1}(x_1,..., x_n, y)=0$. В этом случае будем писать

$$\mathbf{f}^{n}(x_{1},\ldots,x_{n})=\mu y[g^{n+1}(x_{1},\ldots,x_{n},y)=0]$$

Использование оператора минимизации

Используя минимизацию можно получать частично – определенные функции из всюду определенных

Пример 1.

$$g(x,y) = |x - 2y|$$

 $f(x) = \mu y [g(x,y) = 0] = \mu y [|x - 2y| = 0]$
T.e. $f(x) = \mu y [|x - 2y| = 0] = x/2$

Очевидно, что функция f определена только на числах вида 2k, k = 0,1,2,...; и для каждого из них f(2k) = k.

Пример 2. Пусть g(x) = [x/2]. Найдем функцию f(x), которая получается в результате применения оператора минимизации к этой всюду определенной функции. При каждом конкретном х значение f(x) равно минимальному корню уравнения [y/2] = x. Это уравнение имеет два корня: 2x и 2x+1. Поэтому f(x)=2x.

Пример 3. Пусть требуется применить оператор минимизации по аргументу x_2 к функции $g(x_1, x_2) = x_1 - x_2$. Значения искомой функции $f(x_1, x_2)$ будем получать отдельно для случаев $x_2 = 0$ и $x_2 > 0$.

Пусть $x_2 = 0$, тогда уравнение (*) будет иметь вид $x_1 - y = 0$. Решая его относительно y, получаем бесконечное множество корней $\{x_1, x_1 + 1, x_1 + 2, ...\}$. Поскольку минимальным корнем является x_1 , то при всех x_1 значение $f(x_1, 0) = x_1$.

Пусть теперь $x_2 > 0$. Тогда получаем уравнение $x_1 - y = x_2$, которое при $x_2 > 0$ равносильно уравнению $x_1 - y = x_2$. Последнее уравнение имеет единственное решение $y = x_1 - x_2$, если $x_1 \ge x_2$, либо вообще не имеет корней, если $x_1 < x_2$. В итоге получаем следующую функцию:

$$f(x_1, x_2) = \begin{cases} x_1 - x_2, \ ecлu \ x_1 \ge x_2, \\ \text{не определено } \ uначе. \end{cases}$$

Пример 4.

Пусть $f(x,y)=|x-y^2|$. Определим $\phi(x)=\mu y[|x-y^2|=0]$. $\phi(x)=\sqrt{x}$, если x точный квадрат и неопределенна в противном случае.

Тезис Черча

Функция называется **частично-рекурсивной** (вычислимой по Черчу), если она может быть получена из простейших функций с помощью конечного числа операторов суперпозиции, примитивной рекурсии и минимизации.

Если такие функции оказываются всюду определенными, то они называются общерекурсивными функциями.

Указанные операции могут быть выполнены в любой последовательности и любое конечное число раз. Таким образом, мы не просто задаем функцию, но и точно знаем, как её вычислять.

Очевидно, каждая примитивно рекурсивная функция является частично рекурсивной, но обратное неверно.

Введем обозначения:

 $K_{\text{прф}}$ – класс примитивно рекурсивных функций;

 $K_{OP\Phi}^{-}$ – класс общерекурсивных функций;

К_{чрф} – класс частично рекурсивных функций.

Тогда между этими классами имеется соотношения:

$$K_{\Pi P\Phi} \subseteq K_{OP\Phi} \subseteq K_{P\Phi}$$

Тезис Черча (для частично рекурсивных функций).

Класс алгоритмически вычислимых функций совпадает с классом всех частично рекурсивных функций. Принятие данного тезиса позволяет истолковывать доказательство, что некоторая функция не является частично рекурсивной, как доказательство отсутствия алгоритма вычисления ее значений.

Всякая функция, вычислимая с помощью машины Тьюринга, является частично рекурсивной.

Всякая частично рекурсивная функция вычислима на машине Тьюринга.