Тема. Проверка статистических гипотез

План:

- 1. Основные понятия теории статистических гипотез.
- 2. Общая постановка задачи проверки гипотез.
- 3. Проверка гипотез относительно средних (критерий Стьюдента).
- 4. Проверка гипотез о законах распределения.

1. Основные понятия теории статистических гипотез

Статистическая гипотеза — это любое предположение о виде неизвестного распределения или о параметрах известных распределений.

Статистическая гипотеза — это всякое высказывание о генеральной совокупности, проверяемое по выборке.

Процедура сопоставления высказанного предположения (гипотезы) с выборочными данными называется проверкой гипотез.

Гипотезы будем обозначать буквой H с индексами. Будем предполагать, что у нас имеется 2 непересекающиеся гипотезы H₀ и H₁.

Н₀ – нулевая гипотеза (или основная).

H₁ – альтернативная или конкурирующая гипотеза.

Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки.

Задача проверки статистических гипотез состоит в том, чтоб на основе выборки $x_1, x_2, x_3, ..., x_n$

принять (т. е. считать справедливой) либо нулевую гипотезу, либо конкурирующую гипотезу.

При проверке гипотезы может быть принято неправильное решение, то есть могут быть допущены ошибки двух родов:

Ошибка первого рода состоит в том, что отвергается нулевая гипотеза H₀, когда на самом деле она верна.

Ошибка второго рода состоит в том, что отвергается альтернативная гипотеза H₁, когда на самом деле она верна.

Рассматриваемые случаи наглядно иллюстрирует следующая таблица.

Гипотеза Н ₀	Отвергается	Принимается
верна	ошибка 1-го рода	правильное решение
неверна	правильное решение	ошибка 2-го рода

Вероятность ошибки первого рода называется уровнем значимости критерия.

Для проверки принятой гипотезы используют статистический критерий — это правило, позволяющее, основываясь только на выборке $x_1, x_2, x_3, ..., x_n$, принять либо отвергнуть нулевую гипотезу .

Различают два вида критериев: параметрические и непараметрические.

Параметрические критерии представляют собой функции параметров данной совокупности и используются, если совокупности, из которых взяты выборки, подчиняются нормальному закону распределения.

Непараметрические критерии применяются, если нет подчинения распределения нормальному закону.

2. Общая постановка задачи проверки гипотез

1. Формулируют (выдвигают) нулевую гипотезу об отсутствии различий между группами, об отсутствии существенного отличия фактического распределения от некоторого заданного, например, нормального, экспоненциального и др.

Сущность нулевой гипотезы : разница между сравниваемыми генеральными параметрами равна различия, наблюдаемые нулю, и выборочными между характеристиками, носят случайный есть эти выборки характер, одной генеральной принадлежат совокупности.

- 2. Формулируют противоположную нулевой альтернативную гипотезу.
 - 3. Задают уровень значимости $\, lpha \,$.

Уровень значимости - это вероятность ошибки отвергнуть нулевую гипотезу, если на самом деле эта гипотеза верна.

При $\alpha \le 0.05$ ошибка возможна в 5% случаев.

4. Для проверки выдвинутой гипотезы используют критерии.

Критерий – это случайная величина К, которая служит для проверки Н₀. Эти функции распределения известны и табулированы.

Критерий зависит от двух параметров: от числа степеней свободы и от уровня значимости. Фактическую величину критерия получают по данным наблюдения $K_{HAEЛ}$.

- 5. По таблице определяют критическое значение, превышение которого при справедливости гипотезы маловероятно $K_{\mathit{KPUT}}(\alpha,f)$
 - 6. Сравнивают K_{HABJI} и $K_{KPMT}(\alpha,f)$.

Если $K_{{\it HABJI}} > K_{{\it KPMT}}(\alpha,f)$, то отвергают H_0 и принимают H_1 .

Если $K_{\text{HABJI}} < K_{\text{КРИТ}}(\alpha, f)$, то отвергают H_1 и принимают H_0 .

7. Вывод: различие статистически значимо (0,05) или незначимо.

3. Проверка гипотез относительно средних

Сравнивают друг с другом две независимые выборки объемов n_1 и n_2 , взятые из нормально распределенных совокупностей с параметрами $M(X_1)$ и $M(X_2)$. Дополнительно предполагаем, что неизвестные генеральные дисперсии равны между собой. По этим выборкам найдены соответствующие выборочные средние \overline{x}_1 и \overline{x}_2

и исправленные дисперсии S_1^2 и S_2^2 . Уровень значимости задан.

- 1. Нулевая гипотеза H_0 : $M(X_1) = M(X_2)$;
- **2**. Альтернативная гипотеза H_1 : $M(X_1) \neq M(X_2)$
- 3. $\alpha \le 0.05$
- 4. Для проверки нулевой гипотезы в этом случае можно использовать критерий Стьюдента сравнения средних.

Величину критерия находим по формуле:

$$t_{HABJI} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}} \cdot \sqrt{\frac{n_1 \cdot n_2(n_1 + n_2 - 2)}{n_1 + n_2}}$$

Доказано, что величина $t_{HAEЛ}$ при справедливости нулевой гипотезы имеет t – распределение Стьюдента с

$$f = n_1 + n_2 - 2$$

степенями свободы.

- 5. По таблице находим $t_{KPUT}(\alpha, f = n_1 + n_2 2)$
- 6. Сравниваем t_{крит} и t_{набл}.

Если
$$|t_{HABJI}| < t_{KPUT}(\alpha, f) \Rightarrow H_0$$

Если
$$\left|t_{\mathit{HABJI}}\right| > t_{\mathit{KPUT}}(\alpha,f) \Rightarrow H_1$$
 различие достоверно

Пример.

По двум независимым малым выборкам объемов $n_1=5$ и $n_2=6$, извлеченным из нормальных генеральных совокупностей X_1 и X_2 , вычислены выборочные средние:

$$\bar{x}_1 = 3.3$$
 и $\bar{x}_2 = 2.48$.

Известно, что генеральные дисперсии примерно равны, т. е. $D_{\mathit{\Gamma EH}_1} = D_{\mathit{\Gamma EH}_2}$.

При уровне значимости $\alpha \le 0.05$ проверить нулевую гипотезу H_0 : $M(X_1) = M(X_2)$ если

$$t_{HABJI} = 3,27$$

Решение.

$$t_{KPUT}(\alpha \le 0.05, f = n_1 + n_2 - 2 = 5 + 6 - 2 = 9) = 2.26.$$
 $t_{HAEII} > t_{KPUT}(\alpha, f) \Rightarrow omeepraem H_0$

Вывод: выборочные средние различаются значимо $\alpha \le 0.05$

4. Проверка гипотез о законах распределения

Во многих практических задачах закон распределения случайных величин заранее не известен, и надо выбрать модель, согласующуюся с результатами наблюдений.

Выдвигают нулевую гипотезу: неизвестная функция распределения исследуемой случайной величины X распределена по некоторому теоретическому закону, например, по нормальному закону

$$H_0: F(x) = F_{TEOP}(x)$$

В качестве этой теоретической модели может быть рассмотрен любой закон, например, экспоненциальный или биномиальное распределение.

Это определяется сущностью изучаемого явления, а также результатами предварительной обработки наблюдений: формой графика распределения, соотношениями между выборочными данными.

Выдвигается альтернативная гипотеза, что данная генеральная совокупность не распределена по закону $F_{TFOP}(\chi)$:

$$H_1: F(x) \neq F_{TEOP}(x)$$

Задается уровень значимости, например,

$$\alpha \leq 0.05$$

Если хотим проверить, согласуются эмпирические данные с нашим гипотетическим предположением относительно теоретической функции распределения или нет, то используем критерий согласия.

Критерий согласия — это критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Рассмотрим один из них, использующий распределение χ^2 и получивший название критерий согласия Пирсона.

Применим критерий χ^2 к проверке нулевой гипотезы , что генеральная совокупность распределена нормально.

Критерий предполагает, что результаты наблюдений сгруппированы вариационный ряд и разбиты на классы.

По выборке объема п построим эмпирическое распределение $F_{\rm ЭМП}(x)$:

варианты: $x_1, x_2, ..., x_k$;

эмпирические частоты: $n_1, n_2, ..., n_k$;

и сравним его с предполагаемым теоретическим распределением, вычисленным в предположении нормального закона распределения.

Теоретические частоты: $n'_1, n'_2, ..., n'_k$

То есть фактически $H_0: n_{\mathit{ЭМП}} = n'_{\mathit{TEOP}}$

В качестве критерия проверки нулевой гипотезы примем случайную величину:

$$\chi^2_{HAEJI} = \sum_{i=1}^k \frac{\left(n_{\mathcal{I}MII} - n'_{TEOP}\right)^2}{n'_{TEOP}}$$
 ,

где k – число классов.

Из таблиц находим $\chi^2_{\it KPUT} (\alpha \le 0.05; f = k - 3)$ Сравниваем, если $\chi^2_{\it HABJ} < \chi^2_{\it KPUT} (\alpha, f) \Rightarrow H_0$

- расхождение теоретических и эмпирических частот незначимое. Следовательно, данные наблюдений согласуются с гипотезой о нормальном законе распределения генеральной совокупности.

Пример.

При уровне значимости $\alpha \le 0.05$ проверить гипотезу о нормальном распределении генеральной совокупности, если известны эмпирические и теоретические частоты.

эмпирические частоты:

6 13 38 74 106 85 30 14

теоретические частоты:

3 14 42 82 99 76 37 13.

Решение.

$$\chi^{2}_{HABJI} = 7,19$$

Найдем $\chi^2_{KPUT}(\alpha \le 0.05, f = 8 - 3 = 5) = 11.1$ Сравниваем: $\chi^2_{HABJI} < \chi^2_{KPUT}(\alpha, f) \Rightarrow H_0$ - расхождение теоретических и эмпирических частот незначимое.

Следовательно, данные наблюдений согласуются с гипотезой о нормальном законе распределения генеральной совокупности.