Изучение геометрического материала в школьном курсе математики

ТМОМ
Методика изучения
основных разделов
предметного содержания
школьного курса математики

План

- 1. Роль геометрии в обучении.
- 2. Методическая схема изучения. геометрической фигуры и ее свойств.
- 3. Методические особенности первых уроков геометрии 7 класса.
- 4. Технология обучения доказательствам.
- 5. Технология обучения решению геометрических задач.

Целью современного геометрического образования является развитие высокой математической культуры, достижение полного развития тех математических способностей личности, которые востребованы ею и обществом.

Дедуктивный метод изложения геометрии (в сочетании с наглядностью), логическая последовательность геометрических теорем, логика теоретических обоснований, методы и факты геометрических исследований и открытий – все это создает цельный и гармоничный мир геометрии, способствующий эстетическому воспитанию человека.

Значимость геометрических знаний

- Геометрические знания и умения, геометрическая культура значимы для многих современных специальностей (конструкторы, дизайнеры и т.п.), т.е. значимы для достижения 1, 3, 4 компонентов цели обучения.
- Геометрия мощное средство развития личности в широком диапазоне, поскольку развивает такие качества как
 - творчество,
 - независимость суждений и поведения.

Возможности дифференциации обучения детей с разным уровнем развития и разными способностями с помощью геометрии

<u>С 1 по 6 класс</u>

- геометрия по сути является «интеллектуальной физкультурой»;
- включаться в занятие геометрией можно в любой момент;
- геометрические интерпретации позволяют лучше понять, запомнить и сделать наглядным арифметический материал.

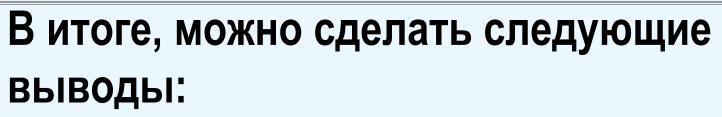
Возможности индивидуализации обучения детей с разными психо-физиологическими особенностями с помощью геометрии

- традиционные методики часто перегружают левое полушарие мозга, что очень опасно для детей с преобладающим правополушарным типом мышления;
- геометрические возможности детей младшего возраста не зависят от уровня их математической подготовки;
- занятия геометрией развивает воображение и повышает творческий потенциал.

Возможности создания условий для развития познавательного интереса учащихся с помощью геометрии

С 7 класса

- требование «систематичности» вступает в противоречие с задачей формирования заинтересованности, возникает опасность «отбить интерес»;
- геометрия имеет хорошие «инструменты» для создания заинтересованности:
 - красивая картинка,
 - хорошая задача,
 - живой язык общения, опора на интуицию.


Возможности создания условий для эмоционального развития учащихся с помощью геометрии

- эмоциональное развитие основа интеллектуального развития, т.к. интеллектуальное удовлетворение является мощным мотивационным стимулом;
- эмоционально заинтересовывать школьников геометрией можно практически до окончания школы.

Возможности обеспечения полноценного математического образования с помощью геометрии в условиях профилизации обучения

<u>В 10-11 классах</u>

- занятия геометрией на основе принципа наглядности дает возможность предоставить полноценное математическое образование учащимся с гуманитарными склонностями;
- в геометрии расстояние между наукой и школьной математикой наименьшее, что позволяет обеспечить высокий уровень подготовки математически одаренным детям, дает им возможность заниматься научными исследованиями со школьной скамьи.

- для полноценого интеллектуального развития ребенка необходима разнообразная интеллектуальная пища;
- геометрия один из немногих «экологически чистых» и полноценных продуктов, потребляемых в системе образования;
- геометрия учебный предмет, который может сбалансировать работу головного мозга;

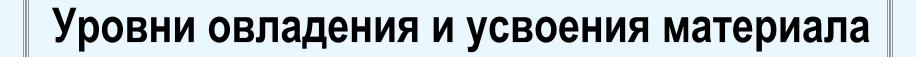
Подводя итог сказанному...

 Чтобы витамины не утратили свои питательные качества, они должны использоваться умелыми кулинарами

Стать такими «кулинарами» - ваша задача!

общие цели изучения геометрических фигур в школьном курсе математики

- систематическое изучение свойств плоских и пространственных геометрических фигур, методов их изучения и применения для решения практических и прикладных задач;
- развитие познавательных процессов
 - восприятия,
 - представления,
 - воображения,
 - мышления,
 - внимания,
 - памяти,
 - речи,
 - умения учиться;


- формирование и развитие интереса к математической деятельности;
- формирование элементов творческой деятельности и конструктивных умений;
- формирование элементов научного мировоззрения:
 - развитие и совершенствование математического аппарата под влиянием практики,
 - влияние развития науки на практику;
- развитие чувства прекрасного;
- воспитание культуры общения, активности,

- 1. Подготовительный этап рассмотрение объектов, имеющих форму данной фигуры, вычерчивание, моделирование, конструирование, выявление характеристических свойств.
- 2. Описание, введение термина и формулирование определения понятия фигуры, выделение ближайшего рода и видовых отличий.
- 3. Изображение фигуры на основе определения, распознавание на моделях,

- 4. Решение задач на усвоение определения:
 - через подведение под понятие,
 - через приведение примеров и контрпримеров.
- 5. Составление родословной и классификации понятий.
- 6. Решение задач с использованием определения и классификации.
- 7. Текущий контроль и коррекция знаний и умений.

- 8. Выявление свойств и признаков фигуры, не указанных в определении путем наблюдения, построения, измерения.
- 9. Формулировка утверждения, основанного на догадке (гипотезе).
- 10. Краткая запись и доказательство признаков или свойств.
- 11. Рассмотрение частных случаев (свойств).
- 12. Решение задач на усвоение каждой теоремы и ее следствий.

- 13. Решение математических и прикладных задач с применением всех свойств и признаков фигуры (т.е. на применение определения и всех изученных теорем).
- 14. Текущий контроль и коррекция знаний и умений.
- 15. Анализ, обобщение и систематизация изученного, выделение главного.
- 16. Итоговый контроль усвоения, определение уровня овладения материалом.

Нагляднопрактический

- •информация добывается из опыта,
- главный результат усвоения:
- ✓ наглядно-оперативное знание предмета (без заучивания формулировки),
- ✓умение правильно оперировать материалом.

<u> Логико-теоретический</u>

- полное логическое обоснование изученному материалу,
- •главный результат усвоения*:*
- и владение доказательством большинства теорем,
- ✓ установление логических связей между понятиями,
- ✓ умение правильно

Основные причины трудностей первых уроков геометрии в 7 классе

- 1. В пропедевтическом курсе геометрии ведущую роль играют **практические**, **наглядные и индуктивные** методы обучения.
- 2. В систематическом курсе геометрии, при сохранении практических, наглядных и индуктивных методов, осуществляется постепенный переход к преобладанию дедуктивных методов обучения.

Особенности первых уроков геометрии

- при систематизации сведений о геометрических фигурах, накопленных в пропедевтическом курсе математики, подчеркивается и закрепляется в сознании учащихся абстрактный характер понятия «геометрическая фигура»;
- накопленный учащимися запас сведений о геометрических фигурах для формирования понятия конкретных геометрических фигур используется в форме «подводящих» задач, чаще всего, практического характера;

- «подводящими» задачами чаще всего являются задачи:
 - на построение объектов с заданными свойствами;
 - на измерение длин сторон, величин углов фигуры;
 - на вычисление длин сторон или углов фигуры;
 - на конструирование и моделирование
 (разрезание, складывание, перегибание и
 т.п.);
- выделяются основные неопределяемые, а не только описываемые и наблюдаемые голько описываемые и наблюдаемые

Особенности первых уроков геометрии

- разъясняется, что всем другим фигурам в геометрии даются определения, как правило, через указание рода и видовых отличий или через способ их построения;
- свойства всех геометрических фигур, кроме неопределяемых, тоже не только рассматриваются непосредственно, но и обязательно выводятся или обосновываются с помощью рассуждений с опорой на свойства известных уже фигур.

Особенности первых уроков геометрии

Таким образом, к концу «первых уроков» геометрии:

- учащиеся постепенно подводятся к пониманию логического строения геометрии;
- вводится и предполагается усвоение учащимися таких понятий как «определение», «аксиома», «теорема»;
- усвоенные понятия являются основой для изучения дедуктивным методом свойств всех остальных геометрических фигур,

Рекомендации к первым урокам геометрии

- свойства простейших геометрических фигур целесообразно изучать через организацию лабораторных и практических работ, т.к. важно дать возможность учащимся строить геометрические объекты своими руками, конструировать их свойства;
- задачи на первые уроки подбираются так, чтобы процесс ее решения содержат все элементы триады: «увидел, понял, доказал»;
- для предотвращения формализма сократить число формулировок для обязательного заучивания;

Рекомендации к первым урокам геометрии

- доказательства целесообразно рассматривать фронтально (или в парах) по готовым чертежам или с использований заданий с пропусками (есть в печатных рабочих тетрадях);
- доказательства у доски спрашивать только по желанию и если есть уверенность, что ответ будет близким к образцу;

Рекомендации к первым урокам геометрии

- при доказательстве теорем учителем очень важно раскрывать состав действия доказательства:
 - анализировать условия,
 - выводить из него следствия,
 - выявлять условия, при которых возможно заключения (достаточные условия),
 - обосновывать правомерность выводов;
- проверку овладения первичными навыками доказательства целесообразно проводить в форме зачета по темам «Равенство треугольников» и «Параллельность прямых» или в конце года.

Иерархия обучения доказательствам

	Обучение доказательствам	
	Обучение поиску	Обучение
5-6	Формирование	Форминествлению
класс	потребности	выполнять дедуктивные
6-7	вобучавия звобоснованиях	обучение выполнению
класс	приемам и их применению	цепочки логических шагов
7класс	Обучение	Формирование умения
	самостоятельному разбору	выделять идею
7-8	OBJABHIE ACKBATSUBSTBIO	Форникраваниестыения
класс	методов научного познания	самостоятельно
		проводить доказательство
9 класс	Обучение умению опровергать предложенные	
И	доказательства	
далее		

Сложное **логическое умение** вести доказательство утверждений (в теоремах или задачах на доказательство) целесообразно разделить на составляющие:

- поиск доказательства,
- проведение доказательства.

Поиск доказательства включает умения :

- •анализировать условие теоремы (задачи),
- •выводить следствия из условия,
- •выявлять достаточные условия для заключения,

Проведение доказательства включает умения:

- •выполнять последовательность умозаключений (рассуждений),
- •обосновывать правомерность выводов.

•высказывать

правдоподобные

1. Для формирования каждого из умений необходимо раскрывать состав действий, лежащих в его основе.

2. Начинать формирование целесообразно на конкретных примерах.

Например,

состав умения «находить достаточные основания» можно выявить при изучении признаков равенства треугольников необходимо каждый раз использовать словесную конструкцию «для того, чтобы доказать равенство треугольников, достаточно доказать:

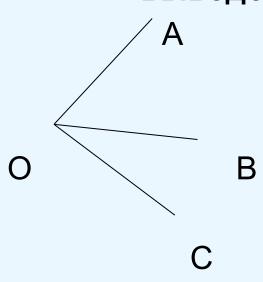
- равенство двух сторон и углов между ними в рассматриваемых треугольниках,
- равенство одной стороны и двух прилежащих к ним углов в рассматриваемых треугольниках,
- равенство трех сторон в рассматриваемых треугольников.

- 3. Обучение умению осуществлять дедуктивные выводы целесообразно осуществлять начиная с 5-6 класса с помощью заданий, направленных на формирование:
 - умения по двум данным посылкам сделать заключение с использованием различных правил вывода;
 - умения строить доказательство, состоящее из одного умозаключения;
 - умения строить доказательство, состоящее более чем из одного умозаключения.

Примеры заданий на отыскание посылок и выводов

Задания с пропусками:

1. Вертикальные углы равны


$$\angle 1$$
 и $\angle 2$ – вертикальные $\angle 1 = \angle 2$

равны

$$\frac{2}{1}$$
 и $\frac{2}{3}$ вертикальные

Примеры заданий на отыскание посылок и выводов

Задания для построения выводов

$$\angle$$
 AOC = 78 0

$$\angle$$
 BOC = 30°

Сформулиру йте несколько утверждений

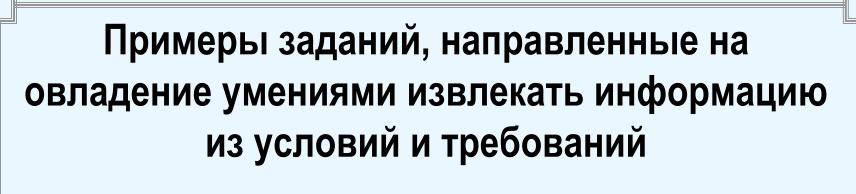
Примеры заданий на отыскание посылок и выводов

Одношаговая задача: лежат ли точки A, B и C на одной прямой,

если AC = 5 см, AB = 3 см, BC = 4 см? Если точки А,В и С лежат на одной Большая прямой, то больший из отрезков АВ, посылка АС, ВС равен сумме двух других AC ≠ AB +BC Малая посылка А,В и С не лежат на одной прямой Вывод

Примеры заданий на отыскание посылок и выводов

Двушаговая задача: один из двух смежных углов равен $40^{\,0}$,


найдите другой угол.

$$1$$
 шаг: Сумма двух смежных углов рав на 180^{0} 200^{0} 100^{0} 100^{0} 100^{0}

1 и 2 - смежные

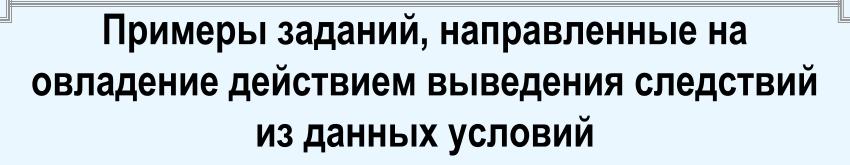
- 4. Начиная с 7класса необходимо формировать в мышлении учащихся специальные ассоциации, позволяющие осуществлять продвижение в доказательствах:
 - «доказать» выделить условие и заключение теоремы или задачи, зафиксировать их словесно и графически;
 - «доказать» преобразовать требование теоремы (задачи) в новое, из которого старое вытекает как следствие, и т.п.

Задание 1.

На луче АВ отложен отрезок АС. При каких условиях точка С лежит между точками А и В?

Задание 2.

Даны углы АОВ и АОС . При каком условии луч ОС проходит между сторонами угла АОВ?


Примеры заданий, направленные на овладение умениями извлекать информацию из условий и требований

Задание 3.

Из вершины С равнобедренного треугольника ABC с основанием AB отложены отрезки: CA₁ – на стороне CA и CB₁ на стороне CB. Дополните условие так, чтобы из него следовало равенство треугольников CAB₁ и CBA₁

Методика работы с заданиями данного типа на примере задания 1

Учитель	Ученик
Что известно?	Отрезок АС отложен на луче АВ, точки В и С не совпадают
Что можно сказать о расположении точек А,В и С?	Либо С лежит между А и В, либо В лежит между А и С
А что надо установить?	Найти условие, которое вместе с данными позволит сделать вывод, что С лежит между А и В
Что надо знать, чтобы утверждать, что С лежит между	Отрезок АС меньше по длине отрезка АВ
Какое же утверждение нужно включить в условие ?	AC < AB

Задание 4.

Точка X принадлежит отрезку AB и не совпадает с его концами. Что следует из этого?

Задание *5*.

Известно, что сумма двух вертикальных углов равна 180 градусам. Какие выводы можно сделать из этого?

Задание 6.

Треугольники ABC и ABC₁ равнобедренные с общим основанием AB. Что отсюда следует?

Методика работы с заданиями данного типа на примере задания 4

- Акцентируется внимание на выводимых следствиях и основаниях для полученных выводах:
 - 1. Х лежит между А и В (по определению отрезка);
 - 2. AX + XB = AB (по свойству измерения отрезков);
 - 3. AX < AB, BX < AB (по свойству величин).
- В случае необходимости следует прибегнуть к развертке получения следствий, например, для следствия 2:
 - ✓ длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой;
 - ✓ X разбивает отрезок AB на части AX и XB AX + XB = AB.

5. При обучении доказательствам предметом специального формирования должен быть прием переформулировки заключения теоремы (требования задачи).

Использование этого приема предполагает владение

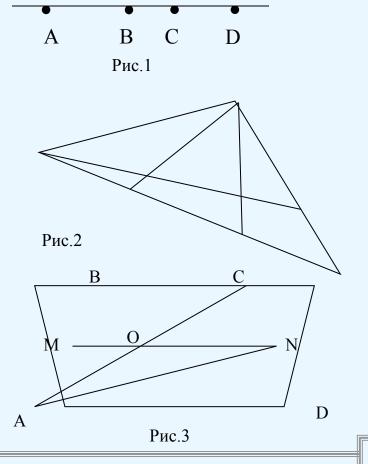
- навыками анализа ситуации,
- приемом выведения следствий,
- приемом подведения объекта под понятие.

Примеры заданий, направленных на овладение приемом переформулировки требования

Задание 7.

Замените требования задачи новыми так, чтобы из них следовали первоначальные требования.

- а) отрезки AB и C \mathcal{D} пересекаются в точке O. Докажите, что если отрезки AC, CB,B \mathcal{D} и A \mathcal{D} равны, то прямые AB и C \mathcal{D} перпендикулярны;
- *б)* докажите, что биссектрисы вертикальных углов лежат на одной прямой;
- *c)* докажите, что в равнобедренном треугольнике середина основания равноудалена от прямых, содержащих боковые стороны.


- б. Большое внимание следует уделять умению читать геометрические чертежи.
 Умение читать чертеж сложное умение, включающее такие действия:
 - простое вычленение фигур;
 - сопоставимое вычленение фигур;
 - распознавание фигур;
 - переосмысление элементов чертежа с точки зрения другого понятия;
 - сравнение фигур;
 - изменение взаимного расположения образов;
 - изменение структуры образов.

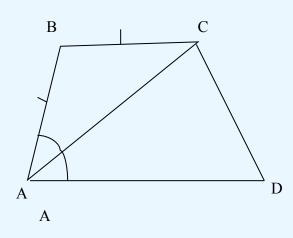
Примеры заданий, направленных на овладение умением читать чертеж

Задание 8. Запишите множество изображенных на рисунке 1 а)отрезков; б)лучей, в)прямых.

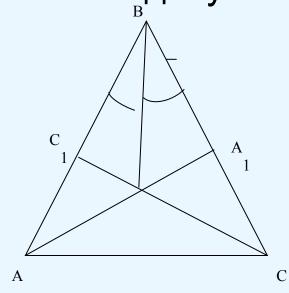
Задание 9. Сколько изображено на рисунке 2 треугольников и сколько четырехугольников?

Задание 10. Элементами каких фигур является отрезок $A\mathcal{N}$ на рисунке $_{A}$

Формирование умения читать чертеж должно осуществляться в единстве с формированием умения анализировать требования и условия доказываемого утверждения.


Эта цель хорошо достигается при систематической работе с готовыми чертежами:

при доказательстве утверждений, условия и требования которых заданы с помощью чертежа;


ППИ СОСТАВПЕНИИ ЗАЛАЧ ПО ГОТОВЫМ

Задание *11* Используя данные рисунка, докажите, что ВС ||АФ

Задание 12 Используя данную конфигурацию, составьте задачу

Состав действий, необходимых при оформлении решения задачи или доказательства теоремы

- выполните чертеж и, если необходимо, дополнительные построения;
- опишите построенный чертеж и дополнительные построения;
- введите все необходимые обозначения для чертежа и записи решения;
- обоснуйте выбранные для решения свойства и зависимости;
- следите за правильным использованием символики, приема решения, приема

построения и вычислений.

Обобщая решение задачи, ответьте на вопрос:

относится ли решенная задача к какому-либо известному типу?

- •если *«да»,* то*:*
 - Был ли вам известен прием решения задачи?
 - Использовали ли вы его?
 - Были ли трудности?
 - . Допустили ли ошибки?

- •если «**нет**», то:
 - Какой способ решения использовали?
 - Является ли он рациональным?
 - Какие теоретические знания использовали при решении?
 - Были ли трудности?
- Как преодолели их?
- . Как преодолели их ?

Состав обобщающего анализа приема решения задачи на доказательство (продолжение)

- Какой новый прием получили?
- В каких задачах его можно использовать в дальнейшем?
- Чему научились, решая эту задачу?

Благодарю за внимание!