Экзотические виды радиоактивного распада

Испускание запаздывающих протонов

 В 1962 г. был обнаружен вылет протонов из высоковозбужденных и поэтому короткоживущих состояний ядер, заселяемых при бета-распаде или в различных ядерных реакциях. Уменьшение энергии отделения протона при продвижении в область протоно-избыточных изотопов делает возможным радиоактивные распады с испусканием запаздывающих протонов.

 Исходное ядро (Z,N) в результате β⁺-распада или Езахвата превращается в ядро (Z-1,N+1). Если энергия возбуждения E* ядра (Z-1,N+1) больше энергии отделения протона B_p, то открыт канал распада возбужденного состояния ядра (Z-1,N+1) с испусканием протона. В настоящее время известно свыше 70 β⁺радиоактивных ядер, излучателей запаздывающих протонов.

В случае легких ядер область протонных излучателей находится относительно близко от долины стабильности.

Поэтому излучатели запаздывающих протонов получают в реакциях типа (р, 2-3n), (³He,2-3n).

Излучатели запаздывающих протонов

Изотоп	T _{1/2} , c	Q _b - Е _p , Мэв	P _p , %*	Реакция	
0				10	
⁹ C	0.126	16.68	100	$^{10}B(p,2n), ^{7}Be(^{3}He,n)$	
¹³ O	0.09	15.81	12	$^{14}N(p,2n)$	
²¹ Mg	0.121	10.66	20	²³ Na(p,3n), ²⁰ Ne(³ He,2n)	
³³ Ar	0.174	9.32	63	³² S(³ He,2n), ³⁵ Cl(p,3n)	
¹⁰⁹ Te	4.4	7.14	3	⁹² Mo(²⁰ He,3n), ⁹⁶ Ru(¹⁶ O,3n)	
¹¹¹ Te	19.3	5.1	0.12	¹⁰² Po(¹² C,3n), ⁹⁸ Ru(¹⁶ O,3n)	
¹¹⁴ Cs	0.7	8.8	7·10 ⁻²	La(p,3pxn)	
¹¹⁵ Cs	1.4	5.41	7.10-4	La(p,3pxn)	
¹¹⁶ Cs	3.9	6.45	6.6.10-3	⁹² Mo(³² S,3p5n)	
¹¹⁸ Cs	16	4.7	$4.4 \cdot 10^{-4}$	La(p,3pxn)	
¹²⁰ Cs	58	2.73	7.10-8	La(p,3pxn)	
¹⁸¹ Hg	3.6	6.15	1.8.10-2	Pb(p,3pxn)	
¹⁸³ Hg	8.8	5	3.1.10-4	Pb(p,3pxn)	

 В 1970 году были зафиксированы протоны, связанные с распадом изомерного состояния ядра ^{53m}Co₂₇

Испускание протонов происходит из изомерного состояния ядра ^{53m}Co с энергией 3.19 МэВ с образованием конечного ядра ⁵²Fe в основном состоянии.

Основной вид распада из изомерного состояния - β⁺-распад.

Испускание протонов из основного состояния ядра

• Начало восьмидесятых годов обогатило ядерную физику открытием нового вида радиоактивных превращений атомных ядер. К известным ранее четырем типам радиоактивности - альфа, бета, гаммараспадам и делению ядер добавился протонный распад, при котором родительское ядро, находясь в основном состоянии, самопроизвольно испускает протон с образованием определенного состояния (не обязательно основного) дочернего ядра.

- Для осуществления протонного распада из основных состояний ядер необходимо было создать такие ядра, в которых протон не был бы связан с дочерним ядром, образующимся после вылета протона из родительского ядра, то - есть энергия относительного движения протона и дочернего ядра Q_р была бы положительной: Q_р > 0.
- Подобные ядра являются сильно нейтронодефицитными, то - есть при данном числе протонов Z они имеют число нейтронов, заметно меньшее числа нейтронов в наиболее устойчивом при данном Z ядре.

 В земных условиях подобные ядра не образуются и их не удавалось получить при использовании всего спектра ядерных установок, начиная с атомных реакторов и кончая ускорителями различных типов.
 Поэтому для наблюдения протонной радиоактивности вначале необходимо было создать в необходимых количествах абсолютно новые по протон -нейтронному составу ядра.

Для получения таких ядер естественно было использовать реакцию слияния более легких стабильных ядер.

 Первое из протонораспадных ядер - ¹⁵¹Lu₇₁ было синтезировано в ядерной реакции вида:

$${}^{58}\text{Ni}_{28} + {}^{96}\text{Ru}_{44} \rightarrow {}^{154}\text{Hf}_{72}^* \rightarrow {}^{151}\text{Lu}_{71} + 1\text{p} + 2\text{n}.$$

- Первое протонораспадное ядро ¹⁵¹Lu₇₁ было получено в 1981 году на рекордном по своим параметрам ускорителе многозарядных ионов в Дармштадте (Германия).
- К настоящему времени исследовано более 30 ядер, испытывающих протонный распад из основных и изомерных состояний, которые заполняют довольно широкую по Z и А область от ⁵³Co₂₇ до ¹⁸⁵Bi₈₃.
- Процесс получения новых подобных ядер интенсивно продолжается и в настоящее время.

Границы нуклонной устойчивости ядер. "Дрип"-линии и протонный распад.

- Энергию отделения протона (нейтрона) S_n (S_n) от ядра (Z,N) с образованием дочернего ядра (Z-1,N) ((Z,N-1)) можно определить как:
- $S_{p}(Z,N) = E_{cB}(Z,N) E_{cB}(Z-1,N) \qquad S_{n}(Z,N) = E_{cB}(Z,N) E_{cB}(Z,N-1).$ Величины S_p(Z,N) и S_n(Z,N) имеют максимальные значения для данного Z при N = N₀. При уменьшении числа нейтронов N от N = N₀, то есть при переходе к нейтронодефицитным ядрам, величина S_p(Z,N) уменьшается и при некотором значении N = N_{dp} становится равной нулю: S_p(Z,N_{dp}) = 0. Атомные ядра с подобными значениями Z, N = N_{dp} соответствуют так называемой протонной "дрип" линии, на которой один из протонов ядра полностью теряет энёргию связи с остальными нуклонами ядра. Английское слово "дрип" переводится как "капать", "падать каплями", что физически соответствует ситуации, когда от ядра, как маленькие капельки начинают отделяться несвязанные протоны.

При увеличении величины N от N = N₀, то - есть при переходе к нейтроноизбыточным ядрам величина S_n(Z,N) начинает уменьшаться и при некотором значении N = N_{dn} обращается в нуль: S_n(Z,N) = 0. Атомные ядра с подобными значениями Z, N = N_{dn} соответствуют нейтронной "дрип"-линии, на которой один из нейтронов полностью теряет энергию связи с остальными нуклонами ядра.

Протонный распад атомных ядер из основных состояний можно наблюдать, если атомное ядро находится за пределами области, ограниченной протонной "дрип"-линией.

- Для всех исследованных протонораспадных ядер энергии вылетающего протона Е, меняются в интервале от 0.5 Мэв до 2 Мэв. В свою очередь доли протонного распада b, лежат в интервале от 0.004 до 1, причем основную конкуренцию протонному распаду составляет бета-распад для ядер с А ≤ 151 и альфа-распад - для более тяжелых ядер. Наконец, парциальные протонные периоды полураспада изменяются в интервале от 1 микросекунды до 50 секунд.
- Наблюдение ядер с протонными периодами полураспада, заметно большими 100 секунд, затруднено из-за сильной конкуренции с бета и альфа - распадами, а с периодами полураспада, меньшими нескольких микросекунд, невозможно изза ограничений, связанных с экспериментальным временем сепарации и накопления протонораспадных ядер.

Двухпротонная радиоактивность

 Испускание двух запаздывающих протонов было обнаружено при β⁺-распаде изотопа ²²AI.
 Эксперимент выполнен на пучке ускоренных ионов ³Не с энергией 110 МэВ. Изотоп ²²AI образовывался в реакции:

²⁴Mg(³He,p4n)²²Al

и далее распадался по цепочке

$$\overset{22}{\text{A1}} \xrightarrow{\beta^+, 2.9\%}_{T_{1/2} = 70 \text{ mc}} \overset{22}{} \text{Mg} (J^{\text{P}} = 4^+, T = 2, E = 14.044 \text{ M}_{3}\text{B}) \xrightarrow{2p} \overset{22}{\longrightarrow} \overset{22}{\text{A1}} \left(\begin{array}{c} J^{\text{P}} = 0^+ E^* = 0 \\ J^{\text{P}} = 2^+ E^* = 1.634 \text{ M}_{3}\text{B} \end{array} \right)$$

Протоны регистрировались двумя телескопами из трех кремниевых счетчиков - системой ΔE₁-ΔE₂-Е детекторов. Измерялись двумерные спектры протонов в режиме совпадений с разрешающим временем 20 нс. В спектре наблюдались два максимума при энергиях E₁ + E₂ = 4.139 и 5.636 МэВ, отвечающих двухпротонному распаду состояния 14.044 МэВ ядра ²²Mg с заселением основного и возбужденного (E* = 1.634 МэВ) состояний конечного ядра ²⁰Ne.

Испускание запаздывающих альфа -частиц

 Для того, чтобы наблюдалось испускание запаздывающих αчастиц, необходимо, чтобы собственная скорость α -распада была существенно больше скорости предшествующего β -

распада.

Испускание запаздывающих нейтронов

- Бета-распад может приводить к образованию ядер в возбужденных состояниях с энергией больше энергии отделения нейтрона. Распад этих состояний может происходить с эмиссией нейтронов.
- В настоящее время известно свыше 150 ядер излучателей запаздывающих нейтронов.

Излучатели запаздывающих нейтронов

Изотоп	T _{1/2} , c	Q _b -Е _n , Мэв	P _n , %	Реакция
¹¹ Li	0.009	22.5	82± 7	р(600 Мэв)+U → фрагментация
¹³ B	0.0174	8.5	0.26± 0.04	$t^{+11}B \rightarrow {}^{13}B^+p$
¹⁷ N	4.16	4.5	95± 1	d+(¹⁶ O+ ³⁷ Cl)
²⁷ Na	0.295	1.6	0.08 ± 0.03	р(Гэв)+U → фрагментация
²⁸ Na	0.036	3	0.58± 0.12	р(Гэв)+U → фрагментация
²⁹ Na	0.048	4.8	21± 4	р(Гэв)+U → фрагментация
³⁰ Na	0.055	7.2	26± 4	р(Гэв)+U → фрагментация
³¹ Na	0.018	11.3	30± 8	р(Гэв)+U → фрагментация
³² Na	0.014	12.2	20± 8	р(Гэв)+U → фрагментация
¹⁴¹ Cs	24.9	0.32	0.05	n(тепл.)+ ²³⁵ U → деление
¹⁴² Cs	1.7	1.04	0.28	n(тепл.)+ ²³⁵ U → деление
¹⁴³ Cs	1.68	1.64	1.13	n(тепл.)+ ²³⁵ U → деление
¹⁴⁴ Cs	1.06	1.89	1.1	n(тепл.)+ ²³⁵ U → деление
¹⁴⁵ Cs	0.59	2.24	12.1	n(тепл.)+ ²³⁵ U → деление
¹⁴⁶ Cs	0.35	2.09	14.2	n(тепл.)+ ²³⁵ U → деление
¹⁴⁷ Cs	0.214	2.96	25.4	n(тепл.)+ ²³⁵ U → деление

Испускание двух и трех запаздывающих нейтронов

 Испускание одного, двух и трех запаздывающих нейтронов наблюдалось при β-распаде ядра ¹¹Li. Энергия β-распада этого ядра составляет 20.6 МэВ, что превышает пороги отделения одного (0.503 МэВ), двух (7.32 МэВ) и трех (8.9 МэВ) нейтронов из ядра ¹¹Ве.

Кластерная радиоактивность

 Кластерная радиоактивность - явление самопроизвольного испускания ядрами ядерных фрагментов (кластеров) тяжелее, чем α-частица.

Экспериментальные результаты по кластерному распаду

Исходное ядро	Испускаемый кластер	Энергия распада, Q, МэВ	λ_{c}/λ_{a}	Т _{1/2} , годы
²²¹ Fr	¹⁴ C	31.28	$< 5.10^{-14}$	$>2.10^{8}$
²²¹ Ra	¹⁴ C	32.39	< 1.2·10 ⁻¹³	>7.4·10 ⁶
²²² Ra	¹⁴ C	33.05	(3.7 <u>+</u> 0.6)·10 ⁻¹⁰	
			$(3.1\pm1.0)\cdot10^{-10}$	
²²³ Ra	¹⁴ C	31.85	$(8.5\pm2.5)\cdot10^{-10}$	
			(7.6 <u>+</u> 3.0)·10 ⁻¹⁰	
			$(5.5\pm 2.0) \cdot 10^{-10}$	
			$(4.7\pm1.3)\cdot10^{-10}$	
			(6.1 <u>+</u> 1.0)·10 ⁻¹⁰	
²²⁴ Ra	¹⁴ C	30.54	(4.3 <u>+</u> 1.2)·10 ⁻¹¹	$(2.3\pm0.6)\cdot10^{8}$
²²⁶ Ra	¹⁴ C	28.21	(3.2 <u>+</u> 1.6)·10 ⁻¹¹	
			(2.9 <u>+</u> 1.0)·10 ⁻¹¹	

²²⁵ Ac	¹⁴ C	30,47	< 4·10 ⁻¹³	> 7.10 ¹⁰
²³¹ Pa	²³ F	51,84	$< 4.10^{-14}$	> 8·10 ¹⁷
230Th	²⁴ Ne	57.78	$(5.6\pm1.0)\cdot10^{-13}$	$(1.3\pm0.3)\cdot10^{17}$
²³² Th	²⁶ Ne	55.97	< 5·10 ⁻¹¹	>3.10 ²⁰
²³¹ Pa	²⁴ Ne	60.42	(3.8 <u>+</u> 0.7)· 10 ⁻¹²	(8.6 <u>+</u> 1.6)·10 ¹⁵
²³² U	²⁴ Ne	62.31	$(2.0\pm0.5)\cdot10^{-12}$	$(3.4\pm0.8)\cdot10^{13}$
²³³ U	²⁴ Ne	60.5	(7.5 ± 2.5) · 10 ⁻¹³	
	²⁵ Ne	60.85	$(5.3\pm2.3)\cdot10^{-13}$	
²³⁴ U	²⁴ Ne	58.84	$(4.4\pm0.5)\cdot10^{-13}$	
	²⁶ Ne	59.47	$(3.9\pm1.0)\cdot10^{-13}$	
²³⁵ U	²⁴ Ne	57.36		
	²⁵ Ne	57.83		
	²⁶ Ne	58.11	< 5·10 ⁻¹²	$> 1.4 \cdot 10^{20}$
²³⁶ U	²⁴ Ne	55.96		
	²⁶ Ne	56.75	< 4·10 ⁻¹²	>6·10 ¹⁸
²³⁴ U	²⁸ Mg	74.13	$(1.4\pm0.2)\cdot10^{-13}$	
			$(2.3\pm0.7)\cdot10^{-13}$	

²³⁵ U	²⁸ Mg	72.2	$< 8.10^{-13}$	$> 9.10^{20}$
²³⁶ U	³⁰ Mg	72.51	$< 4 \cdot 10^{-12}$	> 6.1018
²³⁷ Np	³⁰ Mg	75.02	<4·10 ⁻¹⁴	$> 5 \cdot 10^{19}$
²³⁶ Pu	²⁸ Mg	79.67	~2.10-14	~1.5·10 ¹⁴
²³⁸ Pu	²⁸ Mg	75.93	$(5.6^{+4.4}_{-2.5}) \cdot 10^{-17}$	1 5.1018
	³⁰ Mg	77.03		~1.5.10
	³² Si	91.21	$\frac{(1.4 + 0.6)}{-0.4} \cdot 10^{-16}$	~6.5·10 ¹⁷
²⁴⁰ Pu	³⁴ Si	90.95	< 1.3.10 ⁻¹³	>5.10 ¹⁶
²⁴¹ Am	³⁴ Si	93.84	< 5.10 ⁻¹⁵	> 9·10 ¹⁶
			< 3·10 ⁻¹²	> 1.4 ·10 ¹⁴
			< 4.2·10 ⁻¹³	> 1.0 ·10 ¹⁵
			< 7.4·10 ⁻¹⁶	> 5.8 ·10 ¹⁷

Бета распад на связанные состояния атома

- Необычный распад был впервые обнаружен в 1992 году. Речь идет о β⁻-распаде полностью ионизированного атома на связанные атомные состояния.
- Ядро ¹⁶³Dy на N-Z диаграмме атомных ядер помечено черным цветом. Это означает, что оно является стабильным ядром. Действительно, входя в состав нейтрального атома, ядро ¹⁶³Dy стабильно. Его основное состояние (5/2⁺) может заселятся в результате Е-захвата из основного состояния (7/2⁺) ядра ¹⁶³Ho. Ядро ¹⁶³Ho, окруженное электронной оболочкой, β-радиоактивно и его период полураспада составляет ~10⁴ лет.

Схема -распада полностью ионизованного ¹⁶³Dy.
 Процесс эквивалентен электронному захвату

$$^{163}_{66}$$
Dy $^{66+} \rightarrow ^{163}_{67}$ Ho $^{67+}$ +e⁻+ $\overline{\nu}$

Обратные β-процессы

• Захват антинейтрино протонами

$$\overline{\nu} + p \rightarrow n + e^+$$

• 1959 г. Опыт Коуэна и Райнеса

• Захват нейтрино

• 1956 г. Эксперимент Дэвиса

$$^{37}Cl + \nu \rightarrow ^{37}Ar + e^{-1}$$

Количество ³⁷Ar было определено счетчиком Гейгера по интенсивности рентгеновского излучения, испускаемого при электронном захвате

Двойной бета-распад

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2v$$

The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water + Wood

Background: noticed redicectivity mainly 214D; et 208T1 (at 2.6 MeV) Able to identify e^- , e^+ , γ and α

ββ events selection in NEMO-3

Typical ββ2v event observed from ¹⁰⁰Mo

¹⁰⁰Mo 2β2v preliminary results

(Data Feb. 2003 - Dec. 2004)

 $T_{1/2} = 7.14 \pm 0.02 \text{ (stat)} \pm 0.54 \text{ (syst)} \times 10^{18} \text{ y}$

7.37 kg.y

2β2v preliminary results for other nuclei

F. Piquemal (CENBG)

²Se
$$T_{1/2} = 0.98 \pm 0.2 \text{ (stat)} \pm 0.1 \text{ (syst)} \times 10^{20} \text{ y}$$

¹⁶Cd $T_{1/2} = 2.8 \pm 0.1 \text{ (stat)} \pm 0.3 \text{ (syst)} \times 10^{19} \text{ y}$
⁵⁰Nd $T_{1/2} = 9.7 \pm 0.7 \text{ (stat)} \pm 1.0 \text{ (syst)} \times 10^{18} \text{ y}$
⁶Zr $T_{1/2} = 2.0 \pm 0.3 \text{ (stat)} \pm 0.2 \text{ (syst)} \times 10^{19} \text{ y}$

Background subtracted

+ Data

] ββ2ν

2

1

Излучения, сопровождающие радиоактивный распад

- Процессы электронного захвата и внутренней конверсии приводят к образованию вакансии на одной из атомных оболочек.
- Релаксационный процесс заполнения свободной вакансии сопровождается излучением рентгеновского кванта или испусканием Оже-электрона.

Рис. 39. Схема искажений аппаратурного спектра вследствие истинных совпадений КХ-и LХ-лучей с К-, L-, М- и N-ЭВК для перехода с энергией E. Прямоугольники средней полосы — энергегическое распределение излучений, нижней и верхней — искажения интенсивностей ЭВК в результате совпадений с КХ- и LХ-лучами соответственно. Обозначения Зигбана для LХ-лучей:

$$L_{\eta} = L_2 - M_1; \qquad L_{a_1} = L_3 - M_5; \quad L_{\beta_1} = L_2 - M_4$$

$$L_e = L_3 - M_1; \qquad L_{a_2} = L_3 - M_4; \quad L_{\beta_3} = L_1 - M_3$$

$$L_{\beta_4} = L_1 - M_2$$

$$L_{\beta_6} = L_3 - N_1$$

- 426 -

207_{Bi}

Рис. 17. Спектр гамма-лучей ²⁴¹Ат, измеренный с помощью Si(Li) /50 мм²х 4 мм/-детектора /энергетическое разрешение 280 эВ для Е_у ≈ 5,6 кэВ/.

ω

Auger – электроны

• Оже процесс является конкурирующим испусканию рентгеновского излучения.

Внутреннее тормозное излучение

 Взаимодействие испускаемой ядром заряженной частицы (электрона или αчастицы) с кулоновским полем ядра приводит к рождению тормозных квантов, получивших название внутреннего тормозного излучения (ВТИ).

Спектр ВТИ носит непрерывный характер и простирается до граничной энергии β-спектра или энергии α-частицы.

Энергетическое распределение ВТИ за исключением мягкой области ведет себя как плавно падающая функция.

Спектр внутреннего тормозного излучения ⁹¹Ү (непрерывная линия –теоретический спектр)

Спектр внутреннего тормозного излучения ⁵⁵Fe