Communication
P (IPC)

Process : S B Process
A el 2 "\..;,a-*.J‘Jﬂfr B

By
Ravindra Raju Kolahalam

IPC Fundamentals

What is IPC?

Mechanisms to transfer data between
processes

Why is it needed?

Not all procedures can be easily built in a
single process

Why do processes communicate?

To share resources

Client/server paradigms

Inherently distributed applications
Reusable software components

Other good software engineering reasons

The Basic Concept of IPC

AR AR i

A process needs to send data to a receiving
process

Sender wants to avoid details of receiver’s
condition

Receiver wants to get the data in an organized
way

IPC from the OS Point of View

Private
address
space

OS address space

Process A

Private
address
space

Process B

Each process has a private address space

Normally, no process can write to another
process’s space

How to get important data from process A to
process B?

OS Solutions to IPC Problem

e -

Fundamentally, two options
1. Support some form of shared address space
Shared memory

2. Use OS mechanisms to transport data from
one address space to another

Files, messages, pipes, RPC, signal, ...

Fundamental Differences in OS
Treatment of [PC Solutions

Shared memory
OS has job of setting it up
And perhaps synchronizing
But not transporting data
Messages, etc
OS involved in every IPC
OS transports data

P S N

[PC Through the File System

Sender writes to a file
Receiver reads from it

But when does the receiver do the read?

Often synchronized with file locking or lock
files

Special types of files can make file-based IPC
easier

File IPC Diagram

A\

Process A Data Process B

Message-based [PC

Sender formats data into a formal message
With some form of address for receiver

OS delivers message to receiver’s message

input queue (might signal too)

Receiver (when ready) reads a message from

the queue

Sender might or might not block

Message-based IPC Diagram

Process A Data sent B’s message Process B
fromAtoB queue

Uses same procedure call interface as
intraprocess

Data passed as parameters
Info returned via return values

Complicated since destination procedure is in
a different address space

Generally, calling procedure blocks till call
returns

File IPC Diagram

main () {

call();

Data as parameters

Process A

—l-

Data as return values

= server();

\I

Process B

Shared Memory IPC

Different processes share a piece of memory
Either physically or virtually

Communications via normal reads/writes

May need semaphores or locks
In or associated with the shared memory

Shared Memory IPC Diagram

main () {
write variable x
x=10 :
x: 10 — print(x);
read variable x :
}

Process A Process B

process;

physical
memory

process,

page A

page B

e

page C

int main() {
// ftok to generate unique key
key tkey = ftok("shmfile",65);

// shmget returns an identifier in shmid
int shmid = shmget(key,1024,0666|
IPC_CREAT);

// shmat to attach to shared memory
char *str = (char™)
shmat(shmid,(vo1d*)0,0);

int main()

{

// ftok to generate unique key
key tkey = ftok("shmfile",65);

// shmget returns an identifier in shmid
int shmid =
shmget(key,1024,0666[IPC_CREAT);

// shmat to attach to shared memory
char *str = (char™)
shmat(shmid,(vo1d*)0,0);

Pipes

Only IPC mechanism in early UNIX systems
(other than files)

Uni-directional

PN L N P A L P P

Uninterpreted
Interprocess byte streams
Accessed in file-like way

A

What is PIPE

« A pipeline is a set of processes chained by their
standard streams, so that the output of each
process (stdout) feeds directly as input (stdin) to
the next one.

« Each connection is implemented by an anonymous
pipe.

— Pige A | —>
<_| Fipe B](_

Pipe Details

One process feeds bytes into pipe
A second process reads the bytes from it

Potentially blocking communication
mechanism

Requires close cooperation between
processes to set up

Named pipes allow more flexibility

Sockets

Introduced in 4.3 BSD

A socket is an |IPC channel with generated
endpoints

Great flexibility in its characteristics
Intended as building block for communication

Endpoints established by the source and
destination processes

Socket

» Sockets provide point-to-point, two-way
communication between two processes.

» Sockets are very versatile and are a basic
component of inter process and intersystem
communication.

» A socket is an endpoint of communication to which
a name can be bound.

» It has a type and one or more associated
processes.

» Sockets exist in communication domains.

» A socket domain is an abstraction that provides an
addressing structure and a set of protocols.

Sockets connect only with sockets in the same
oJ 25 v o= 8 v

More on Sockets

Created using the socket() system call
Specifying domain, type, and protocol
Sockets can be connected or connectionless

Each side responsible for proper setup/access

Socket Domains

the socket domain describes a protocol family
used by the socket

Generally related to the address family
Domains can be:

Internal protocols

Internet protocols

IMP (interface message processors) link layer
protocols

Socket Types

The socket type describes what the socket
does

Several types are defined
SOCK_STREAM

A,

Establishing connection,

o
Server

r
socket
-
. :
bind
%
5 |
listen
e
} +
accept
N

three-way handshake

Client sending data,

server receiving data

Server sending data,

recwv

.

client receiving data

Client sending an end message

send

‘

B . =
Client
- o
socket
N o
NI THE.
connect -
i l >
send }
i +
recwv]4
‘ +
r
closesocket 1
ke -3
" >

.

closesocket

o !
{
£

The BSD server creates a socket, uses bind to
attach that socket to a port, and configures it
as a listening socket. This allows the server to
receive incoming connection requests.
Afterwards, accept is called, which will block
the socket, until an incoming connection
request is received.

When accept returns, the SOCKADDR structure
will have been filled out with the originating IP
Address and port of the incoming connection.
Then, accept creates a new socket, which is
then used to receive data until the connection

UDP Server

socket()

bind()
UDP Client

socket()
recvirom() -

blocks until datagram
— > sendto() received from the client

data (request) ol
do something
Y
recvirom() qu data (reply) sendto()

l close() l

T

4
/

~

Signal

Signal is a limited form of IPC used in Unix and
Unix-like operating systems.

Essentially it is an asynchronous notification sent
to a process in order to notify it of an event that
occurred.

When a signal is sent to a process, the operating
system interrupts the process's normal flow of
execution.

Execution can be interrupted during any
instruction.

Signal ¢ ::r::: : Default action ¢ Description
SIGABRT 6 | Terminate (core dump) | Process abort signal
SIGALRM 14 Terminate Alarm clock
SIGBUS N/A Terminate (core dump) @ Access to an undefined portion of a memory object
SIGCHLD N/A Ignore Child process terminated, stopped, or continued
SIGCONT N/A Continue Continue executing, if stopped
SIGFPE 8 | Terminate (core dump) | Erroneous arithmetic operation
SIGHUP 1 Terminate Hangup
SIGILL 4 | Terminate (core dump) | lllegal instruction
SIGINT 2 Terminate Terminal interrupt signal
SIGKILL 9 Terminate Kill (cannot be caught or ignored)
SIGPIPE 13 Terminate Write on a pipe with no one to read it

