## Sergey Sokolov, DLNP, JINR Development of the optical module's prototype for ArgonCube

### ArgonCube LAr TPC concept



### Design of the optical module prototype



#### The mechanism of light collection



# Performance of Hamamatsu SiPM S13360 - 6025CS in liquid nitrogen





Spectrum of SiPM at liquid nitrogen temperature (-196 deg. of C)

## LED source





#### Light diffusing by Teflon (PTFE) layer

## LED stability

#### High light intensity ~ 10<sup>3</sup> ph.e



LED source stability measured by

ECALo prototype for the COMPASS experiment

(Has precise photosensor temperature stabilization < 10 mdeg) in june-july 2015 @ T10 (CERN).

Temperature variation in the hall: 24 (nignt) - 38 (day)

#### Low light intensity $\approx$ 1.75 ph.e



LED source stability measured by 20" Hamamatsu 12860 HQE PMT in a single point

#### LED calibration scheme



#### Room temperature testing scheme



#### Room temperature testing scheme





# Results of testing under room temperature conditions

|                                                              | U, V | 2 part |        | 1 part |        |
|--------------------------------------------------------------|------|--------|--------|--------|--------|
|                                                              |      | μ      | PDE, % | μ      | PDE, % |
| frame with<br>fibers                                         | 57   | 2,36   | 0,84   | 2,07   | 0,74   |
| frame with<br>fibers +<br>white plate                        | 57   | 3,14   | 1,12   | 2,85   | 1,02   |
| frame with<br>fibers +<br>mirrored<br>faces                  | 57   | 3,55   | 1,26   | 3,45   | 1,22   |
| frame with<br>fibers +<br>white plate<br>+ mirrored<br>faces | 57   | 4,94   | 1,76   | 4,84   | 1,72   |
| frame with<br>fibers +<br>mirrored<br>faces + TPB            | 57   | 3,50   | 1,25   | 3,18   | 1,13   |



#### Light guide fiber calibration scheme



#### Nitrogen low temperature testing scheme



#### Nitrogen low temperature testing scheme





# Results of testing under liquid nitrogen conditions





|                                                  | U, V | μ <i>,</i> ph.e. | PDE, % |
|--------------------------------------------------|------|------------------|--------|
| frame with fibers +<br>mirrored faces<br>+TPB+LN | 46   | 5,57             | 1,99   |
|                                                  | 46,5 | 5,9              | 2,09   |
|                                                  | 47   | 6,16             | 2,19   |
|                                                  | 47,5 | 6,38             | 2,26   |
|                                                  | 48   | 6,58             | 2,34   |

## The advanced prototype design

Maximum thickness ~ **10** mm (place to install SiPM ) The rest thickness of module ~ **6** mm The ends of the optical fibers will be round that will give us to increase the light yield ~ 20 %



## Assembling of prototypes

The next step will be to assemble the detector, what consist of 4 similar module The size of the assembling will be 30\*40 mm



### Conclusion

- Optical module prototype reveals a good performance under liquid nitrogen conditions
- Mirrored fiber faces and white plate usage lead to PDE increasing
- PDE in liquid nitrogen is higher then in the air, because of different refractive indices
- TPB cover has no impact on prototype performance
- The tests of optical module prototype have shown a good light collection performance
- The advanced prototype of the optical module is already under construction