LECTURE 6
 Probability

Temur Makhkamov
Indira Khadjieva QM Module Leaders
tmakhkamov@wiut.uz
i.khadjieva@wiut.uz

Office hours: by appointment
Room IB 205
EXT: 546

- The meaning of probability and relevant concepts
- The basic operations of probability
- Sets, combination, and permutation
- Mathematical expectation

Probability is a numerical measure of the chance (or likelihood) that a particular event will occur.

Probability values are always assigned on a scale of 0 to 1 :
0 indicates that an event is very unlikely to occur
1 indicates that an even is almost certain to occur

Experiment vs Sample Space

-The probability is a chance or likelihood of an event to happen
-An experiment is an activity with an observable result
-The trials - repetition of an experiment
-The outcomes - results of each trial
-A sample space is the set of all possible outcomes
-A sample point is an element of the sample space
-An Event is a subset of the sample space

Experiment vs Sample Space

Experiment: rolling a die
Sample space: $\{1,2,3,4,5,6\}$
Event: rolling a 1 ; rolling a number less than 5 ; rolling an even number

- Probability of event occurring =

$$
\frac{\text { Number of ways the event can occur }}{\text { Total number of outcomes }}
$$

- Events can have 1 element: $\{1\}$
- Or many elements $\{1,2,3,4\},\{2,4,6\}$

Experiment vs Sample Space

- Case 1: Probability of rolling a 1 :

$$
\frac{\text { Number of ways the event can occur }}{\text { Total number of outcomes }}=\frac{\{1\}}{\{1,2,3,4,5,6\}}=\frac{1}{6}
$$

- Case 2: Probability of rolling a number less than 5 : =

$$
=\frac{\{1,2,3,4\}}{\{1,2,3,4,5,6\}}=\frac{4}{6}
$$

- Case 3: Probability of rolling an even number:

$$
=\frac{\{2,4,6\}}{\{1,2,3,4,5,6\}}=\frac{3}{6}
$$

Calculation of probability

There are 6 blue, 3 red, 2 yellow, and 1 green marbles in the box.

What is the probability of picking a red marble?

Calculation of probability

There are 6 blue, 3 red, 2 yellow, and 1 green marbles in the box.

Probability of an event $=$

$$
\frac{\text { Number of ways the event can occur }}{\text { Total number of possible outcomes }}
$$

What is the probability of picking a red marble?

Thus, the probability of picking a red marbles is: $3 / 12=0.25$ or 25%

Probability of Red

Calculation of probability

-If there are n experimental outcomes, the sum of the probabilities for all the experimental outcomes must be equal to 1
-In the marble scenario,

$$
\begin{gathered}
P(\text { blue })+P(\text { red })+P(\text { yellow })+P(\text { green })= \\
\\
=0.5+0.25+1 / 6+1 / 12=1
\end{gathered}
$$

Examples...

Experiment	Experimental outcomes	Sample space
Toss a coin	Head, tail	$\mathrm{S}=\{$ Head, Tail $\}$
Apply for a job	Hired, not hired	$\mathrm{S}=\{$ Hired, Not Hired $\}$
Roll a die	$1,2,3,4,5,6$	$\mathrm{~S}=\{1,2,3,4,5,6\}$
Play a game	Win, lose, draw	$\mathrm{S}=\{$ Win, Lose, Draw $\}$
Run a business	Profit, loss, even	$\mathrm{S}=\{$ Profit, Loss, Even $\}$

-Multiple step
-Combination
-Permutation

Multiple step experiment

Experiment of a sequence of \boldsymbol{k} steps

Total number of experimental outcomes is the product of number of outcomes in each step

Total number of outcomes $=\left(n_{1}\right)\left(n_{2}\right)=2^{*} 2=4$
Thus, sample space is
$\left(n_{1}\right)\left(n_{2}\right)\left(n_{3}\right) \ldots\left(n_{k-1}\right)\left(n_{k}\right)$

Example: let's toss the coin twira

Probability Tree Diagram

 An Accredited Institution of the University of Westminster (UK)
TOSSING A COIN

Probability Tree Diagram

TOSSING A COIN TWICE!

First Flip
Second Flip
Outcomes

Probability calculation

PROBABILITY RULE
First Flip

Second Flip
Outcomes
Calculations

Self exam-training task:

Find the number of all possible outcomes for rolling a die three times

Combination

Example:

In this classroom, a lecturer randomly picks two of five students (let's say Shakhzoda, Imana, Azamat, Zakariyo and Artyom) to test their knowledge of probability. In a group of five smart students, how many combinations of two students may be selected? (sequence of selection does not matter)

Verbal solution: a lecturer may have 10 picks Shakhzoda with Imana
Shakhzoda with Azamat
Shakhzoda with Zakariyo
Shakhzoda with Artyom
Imana with Azamat
Imana with Zakariyo
Imana with Artyom
Azamat with Zakariyo
Azamat with Artyom
Zakariyo with Artyom

Combination

Combination formula: \boldsymbol{n} objects are to be selected from a set of \boldsymbol{N} objects, where the order of selection is not important.

$$
C_{N}^{n}=\binom{N}{n}=\frac{N!}{n!(N-n)!}
$$

Where, $n!=n \cdot(n-1) \cdot(n-2) \ldots 3 \cdot 2 \cdot 1$
Example: $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$
Solution: $\quad \mathrm{N}=5$ and $n=2$.
Total number of outcomes $=$

$$
C_{5}^{2}=\binom{5}{2}=\frac{5!}{2!(5-2)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=10
$$

Example:

In this classroom, out of these five students, let's assume their names are Aziza, Bekzod, Charos, Daler and Erkin, how may ways do we have in order to have one interviewer and one interviewee?

Verbal solution: a lecturer may have 20 picks

1. AB	$6 . \mathrm{BD}$	$11 . \mathrm{BA}$	$16 . \mathrm{DB}$
$2 . \mathrm{AC}$	$7 . \mathrm{BE}$	$12 . \mathrm{CA}$	$17 . \mathrm{EB}$
$3 . \mathrm{AD}$	$8 . \mathrm{CD}$	$13 . \mathrm{DA}$	$18 . \mathrm{DC}$
$4 . \mathrm{AE}$	$9 . \mathrm{CE}$	$14 . \mathrm{EA}$	$19 . \mathrm{EC}$
$5 . \mathrm{BC}$	$10 . \mathrm{DE}$	$15 . \mathrm{CB}$	$20 . \mathrm{ED}$

Permutation formula: \boldsymbol{n} objects are to be selected from a set of \boldsymbol{N} objects, where the order of selection is important.

$$
P_{N}^{n}=\frac{N!}{(N-n)!}
$$

Solution:

$$
\mathrm{N}=5 \text { and } n=2
$$

Total number of outcomes:

$$
P_{5}^{2}=\frac{5!}{(5-2)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1}=20
$$

Operations with events

$A \cup B$ The union of events A and B is the event containing all experimental outcomes belonging to A or B or both.
$A \cap B$ The intersection of A and B is the event containing the experimental outcomes belonging to both A and B .
A^{C} The complement of an event A is an event consisting of all experimental ouicomes that are not in A .

Operations with events

- Toss a die and observe the number that appears on top
- $\mathrm{S}=\{1,2,3,4,5,6\}$ (sample space)
- $A=\{2,4,6\}$ (even numbers)
- $B=\{1,3,5\}$ (odd numbers)
- $\mathrm{C}=\{2,3,5\}$ (prime numbers)

AUC $=\{2,3,4,5,6)$ - the event that an even number or a prime number is observed
$B \cap C=\{3,5\}$ - the event that an odd prime number is observed
$C^{C}=\{1,4,6\}$ - the event that a non prime number is observed

Exercises:

Find 1) $B U C ; 2) A \cap C ; 3)(B U C)^{C}$

Relationship of events

-Mutually exclusive events -
$P(A \cap \bar{B})=0^{\prime}$ ents \mathbf{A} and \mathbf{B} do not have any experimentar outcomes in common
-Dependent events
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$ ent \mathbf{A} has an influence on the
-Independent events
$P(A \mid B)=\stackrel{\text { Th }}{P}(A)^{\text {vent }}$ vas no influence on the

Addition rule for union

Question: On Quantitative Methods module for 600 CIFS students at WIUT, 480 passed the in-class test and 450 passed the final exam, 390 students passed both exams.
Due to high failure rate, the module leader decides to give a passing grade to any student who passed at least one of the two exams.

What is the probability of passing this module?

- The addition rule is used to compute the prohnhilitı of the iminn $n f$ tinin numnta.

$$
P(A \cup B)=P(A)+P(B)-P(A \xlongequal{\hat{\imath}} B)
$$

1) $P(I)=\frac{480}{600}=0.80$
2) $P(F)=\frac{450}{600}=0.75$
3) $P(I \cap F)=\frac{390}{600}=0.65$

$$
\begin{aligned}
P(I \cup F) & =P(I)+P(F)-P(I \cap F) \\
& =0.8+0.75-0.65=0.90
\end{aligned}
$$

Multiplication rule for intersection

The multiplication rule is used to compute the probability of the intersection of two events

$$
P(A \cap B)=P(B) P(A \mid B)
$$

$$
\left(\text { derives from } P(A \mid B)=\frac{P(A \cap B)}{P(B)}\right)
$$

The multiplication rule (simplified) for independent events

$$
P(A \cap B)=P(B) P(A)
$$

Multiplication Rule

A bowl contains 7 red marbles and 3 black marbles. Two marbles are drawn without replacement from the bowl. What is the probability that both of the marbles are black?

shutterstock.com - 384892456

Solution

Let $\mathrm{A}=$ the event that the first marble is black;
let $\mathrm{B}=$ the event that the second marble is black.
We know the following:
\checkmark In the beginning, there are 10 marbles in the bowl, 3 of which are black. Therefore, $\mathrm{P}(\mathrm{A})$ $=3 / 10$.
\checkmark After the first selection, there are 9 marbles in the bowl, 2 of which are black. Therefore, $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=2 / 9$.

Therefore, based on the rule of multiplication:

$$
\begin{gathered}
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \\
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=(3 / 10) *(2 / 9)=6 / 90=2 / 30=0.067 \text { or } 6.67 \%
\end{gathered}
$$

Mathematical expectation

365bet.com sent you following offers for coming El-Classico game depending on your betting:
a) If Barcelona wins, they will triple your money
b) If Real Madrid wins, they will double your money
c) If game results in a draw, they will quadruple your money

If you would like to bet for $\$ 100$, assuming the possibilities of outcomes are equally likely, what will be the expected sum of your money?

Your possible earnings:

- \$300 or \$0 if you bet on Barcelona's victory
- $\$ 200$ or $\$ 0$ if you bet on Real Madrid's victory
- $\$ 400$ or $\$ 0$ if you bet on a draw

Hence, the expected sum of your income will be

$$
E(i)=\$ 200 \times \frac{1}{3}+\$ 300 \times \frac{1}{3}+\$ 400 \times \frac{1}{3}=\$ 300
$$

Concluding remarks

Today, you learned:
-Basic concepts within probability theory
-Basic operations of calculating the sample space and number of probable events (combinations, permutations)
-Operations with events
-Relationship of events
-Multiplication and Addition Rule
-Expected Value

Essential reading

-Jon Curwin, "Quantitative methods." Ch-9 (p.249).

