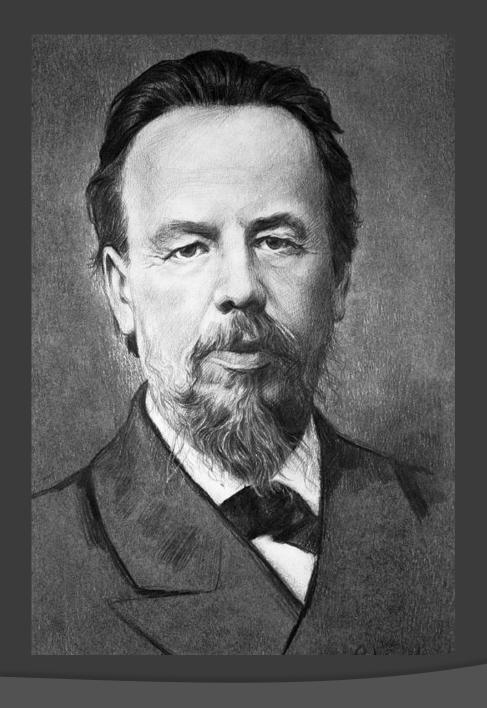

ПЕРЕДАЧА ИНФОРМАЦИИ ПО РАДИОКАНАЛУ

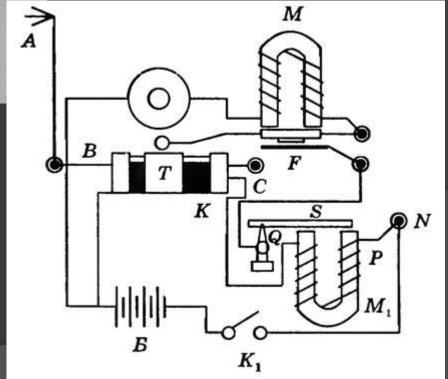
Подготовил студент группы ИСТ-Tb11

Кузнецов Д.В.


Руководитель: Попов А.Э.

Джеймс Максвелл

Генрих Герц


Александр Степанович Попов

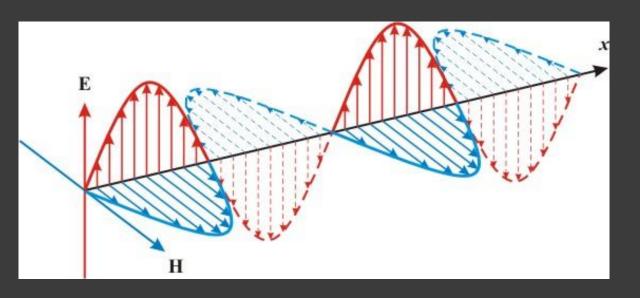
(4 [16] марта 1859, посёлок Турьинские Рудники Пермской губернии — 31 декабря 1905 [13 января 1906], Санкт-Петербург) — русский физик и электротехник, профессор, изобретатель, статский советник (1901), Почётный инженерэлектрик (1899). Изобретатель радио.

Радиоприёмник Попова

Схема радиоприёмника **в**

Закрытый колебательный контур

$$\frac{d^2q}{dt^2} + \frac{dq}{LC} = 0$$


$$q(t) = Q_0 \sin \omega_0 t$$

$$T = 2\pi\sqrt{LC}$$

$$\omega_0 = \sqrt{\frac{1}{LC}}$$

$$\begin{cases} \nabla^2 \vec{E} = \frac{1}{V^2} \cdot \frac{d^2 \vec{E}}{dt^2} \\ \nabla^2 \vec{H} = \frac{1}{V^2} \cdot \frac{d^2 \vec{H}}{dt^2} \end{cases}$$

Дифференциальное уравнение для электромагнитной волны

Плоская ЭМ волна

$$\left\{ egin{aligned} ec{E}(t) &= ec{E}_m \cos(\omega t - kx) \end{aligned}
ight. \ ec{H}(t) &= ec{H}_m \cos(\omega t - kx) \end{aligned}
ight.$$
 вол

Уравнение плоской электромагнитной волны

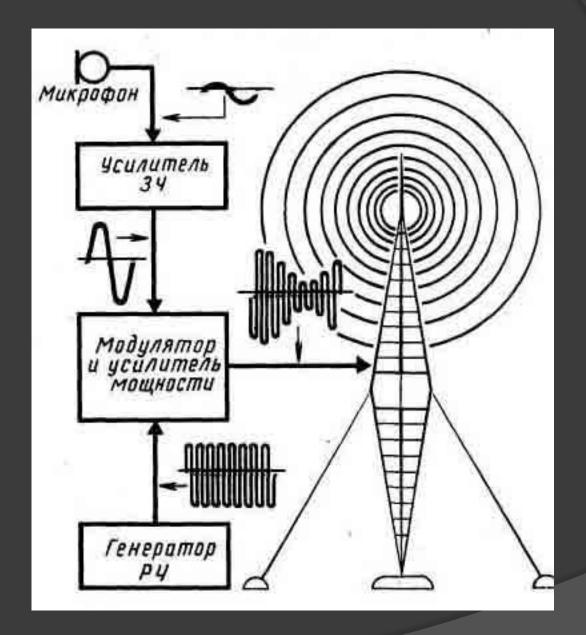


Схема передатчика радиоволн

Виды модуляции сигналов

Обозн-е МСЭ	Длины волн	Название волн	Диапазон частот	Название частот
ELF	100 Мм — 10 Мм	Декамегаметровые	3—30 Гц	Крайне низкие (КНЧ)
SLF	10 Mm — 1 Mm	Мегаметровые	30—300 Гц	Сверхнизкие (СНЧ)
ULF	1000 км — 100 км	Гектокилометровые	300—3000 Гц	Инфранизкие (ИНЧ)
VLF	100 км — 10 км	Мириаметровые	3—30 кГц	Очень низкие (ОНЧ)
LF	10 км — 1 км	Километровые	30—300 кГц	Низкие (НЧ)
MF	1000 м — 100 м	Гектометровые	300—3000 кГц	Средние (СЧ)
HF	100 м — 10 м	Декаметровые	3—30 МГц	Высокие (ВЧ)
VHF	10 м — <mark>1</mark> м	Метровые волны	30—300 МГц	Очень высокие (ОВЧ)
UHF	1000 мм — 100 мм	Дециметровые	300—3000 МГц	Ультравысокие (УВЧ)
SHF	100 мм — 10 мм	Сантиметровые	3—30 ГГц	Сверхвысокие (СВЧ)
EHF	10 мм — 1 мм	Миллиметровые	30—300 ГГц	Крайне высокие (КВЧ)
THF	1 мм — 0,1 мм	Децимиллиметровые	300—3000 ГГц	Гипервысокие частоты, длинноволновая область инфракрасного излучения

Диапазон радиоволн

Спасибо за внимание!