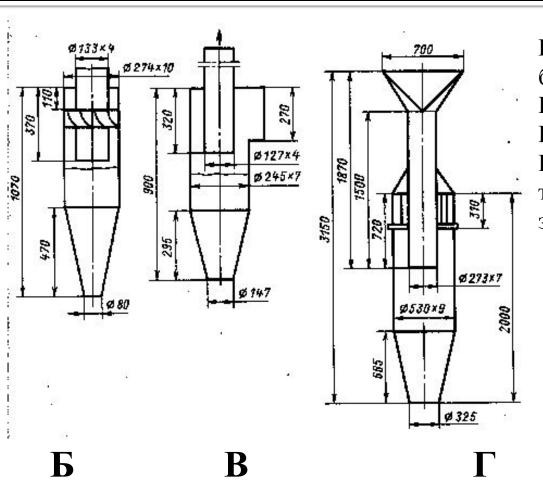

Нормативы удельных выбросов в атмосферу твердых частиц для котельных установок, использующих твердое топливо всех видов (ГОСТ Р50831-95)

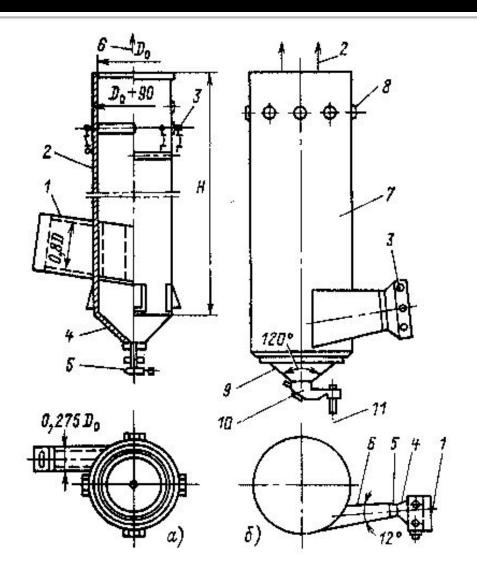
Тепловая	Приведённ	Котельные установки, введённые			Котельные установки,		
мощность	oe	на ТЭС до 31 декабря 2000 г.			введённые на ТЭС с 1 января		
котловQ, МВт	содержани				2001 г.		
(паропроизводите	е золы	Массовый	Массовы	Массовая	Массовы	Массовы	Массовая
льность котла D,	$A^{\Pi p}$,	выброс	й выброс	концентр	й выброс	й выброс	концентр
т/ч)	кг%/МДж	твёрдых	твёрдых	ация	твёрдых	твёрдых	ация
		частиц на	частиц,	частиц в	частиц на	частиц,	частиц в
		единицу	$\kappa_{\Gamma}/_{ m T}$	дымовых	единицу	$\kappa_{\Gamma}/_{\mathrm{T}}$	дымовых
		тепловой		газах при	тепловой		газах при
		энергии,		$\alpha=1,4$,	энергии,		$\alpha=1,4$,
		г/МДж		$M\Gamma/M^3$	г/МДж		$M\Gamma/M^3$
До 299 (до 420)	Менее 0,6	0,06	1,76	150	0,06	1,76	150
	0,6-2,3	0,06-0,20	1,76-5,86	150-500	0,06-0,10	1,76-5,86	150-500
	Более 2,5	0,2	5,86	500	0,1	5,86	500
300 и более (420	Менее 0,6	0,04	1,18	100	0,02	0,59	50
и более)	0,6-2,3	0,04-0,16	1,18-4,70	100-400	0,02-0,06	0,59-1,76	50-150
	Более 2,5	0,16	4,7	400	0,06	1,76	150

Топливо в условном исчислении.


При нормальных условиях (температуре O ⁰C, давлении 101,3 кПа)

Циклонные золоуловители

- *А* батарейный циклон:
- 1 -вход очищаемых газов,
- 2 циклонный элемент,
- 3 трубные доски,
- 4 выход очищенных газов,
- 5 корпус батарейного циклона


Циклонные золоуловители

Б –аксиальный элемент батарейного циклона типа БЦР-254;

В-элемент циклона типа БЦУ-М; Г -элемент ЦКТИ с тангенциальным четырехзаходным завихрителем (БЦ-512).

Мокрые золоуловители

а-центробежный скруббер; 1-входной патрубок; 2-корпус скруббера; 3-подвод орошающей воды; 4-бункер;

5-гидрозатвор; 6-выход очищенного газа;

б-золоуловитель с коагулятором Вентури;

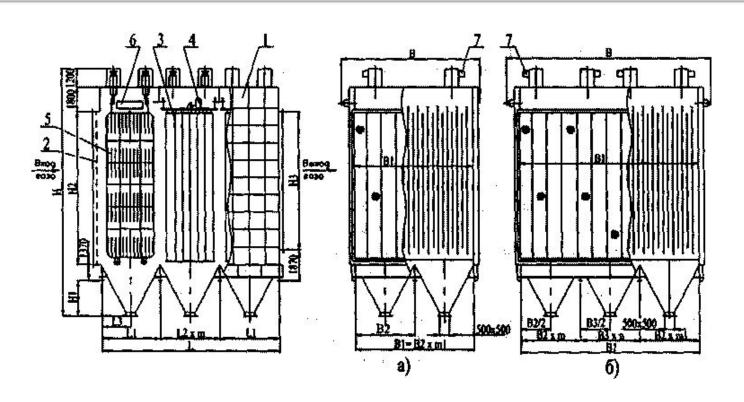
1-вход запыленного газа;

2-выход очищенного газа;

3 – подача воды через форсунки;

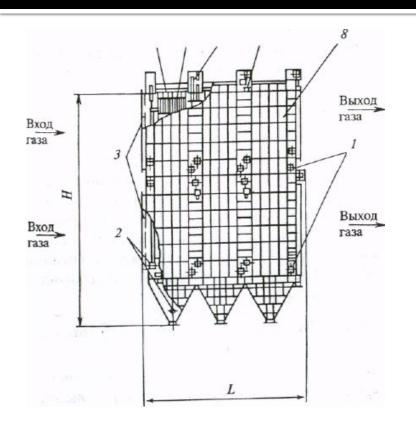
4, 5, 6 – конфузор, горловина, диффузор коагулятора Вентури;

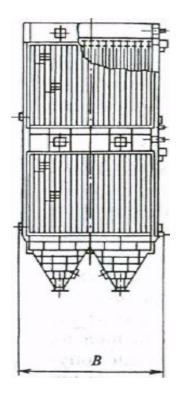
7-корпус каплеуловителя;


8-сопла орошения стенок скруббера;

9-эоловой бункер; 10-гидрозатвор;

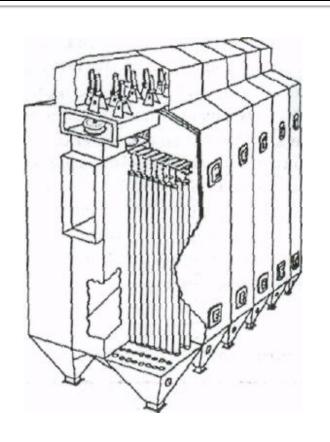
11-удаление пульпы в канал ГЗУ; Н и

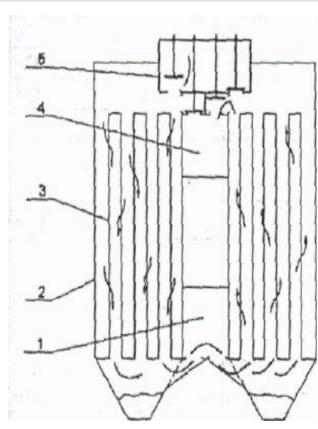

 D_0 – высота и диаметр скруббера


Электрофильтры типа ЭГБВ

а - односекционные; б – двухсекционные: 1-корпус; 2 - газораспределительные решетки; 3 - осадительные электроды; 4 - механизмы осадительных электродов; 5 - коронирующие электроды

Электрофильтры ЭГД





односекционный:

- 1 механизм встряхивания осадительных электродов;
- 2 люк обслуживания;
- 3 газораспределительная решетка;
- 4 коронирующий электрод;
- 5 осадительный электрод;
- 6 механизм встряхивания нормирующих электродов;
- 7 защитная коробка для подвода тока;
- 8 корпус

Общий вид и схема работы фильтра типа ФРО

- 1- коллектор запыленного газа;
- 2 корпус фильтра;
- 3 фильтровальный рукав;
- 4 коллектор запыленного газа;
- 5 клапанная секция

a 6