

«Задача о движении внешней нагрузки по битому льду в канале»

Завьялова К.Н., *студентка II курса* магистратуры Института математики и информационных технологий АлтГУ Научные руководители: *Ст. преп*, Шишмарев К.А., д. ф.-м. н., профессор Папин А.А.

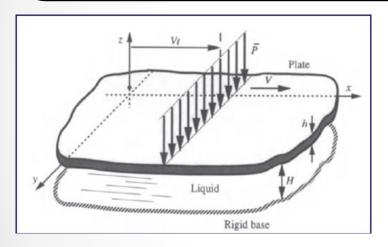
10 апреля 2020 Международная научная студенческая конференция, Новосибирск

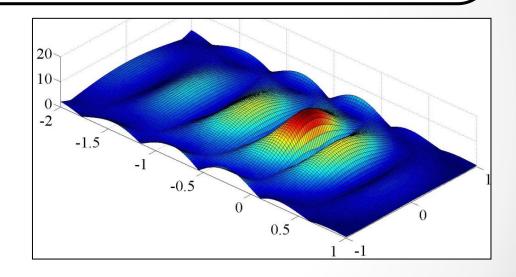
План

- 1. Мотивация.
- 2. Постановка задачи.
- 3. Единственность классического решения.
- 4. Поведение прогибов битого льда при больших временах.
- 5. Заключение.

Мотивация

- Безопасное движение вдоль канала с битым льдом. Могут ли создаваться волны большой амплитуды возле стенок канала?
- Волновое сопротивление. Будут ли трудности в управлении СВП?
- Разрушение льда. Движение в канале, частично покрытом льдом. Движение в полынье. Можно ли создать такие волны, которые, дойдя до ледового покрова, разрушат его.





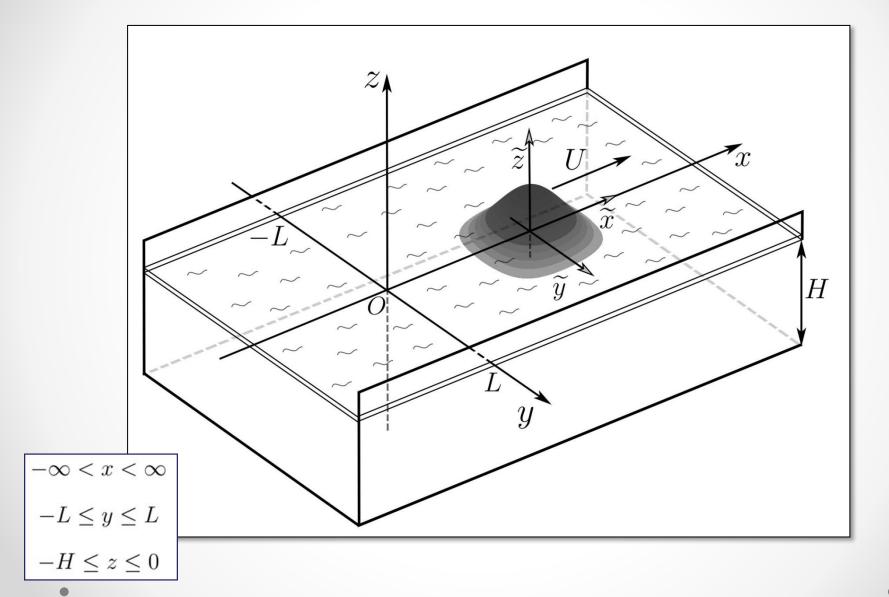
V. Squire. Moving Loads on Ice Plates. 1996. 236 p.

И.В. Стурова, Л.А. Ткачева. Колебания ограниченного ледяного покрова при локальном динамическом воздействии. Полярная механика. 2016. № 3. С. 997-1007.

K. A. Shishmarev, A. A. Papin. Uniqueness of a solution of an ice plate oscillation problem in a channel // Journal of Siberian Federal University. Mathematics and Physics, 2018, 11(4), P. 449-458.

Khabakhpasheva T. Shishmarev K., Korobkin A. Large-time response of ice cover to a load moving along a frozen channel // Applied Ocean Research. 2019. 86. P. 154–165.

Схема задачи



Постановка задачи

Неограниченные области $\Pi \subset R^2$ и $\Omega \subset R^3$

$$\begin{split} \Pi &= \{-\infty < x < \infty, -L < y < L\} \\ \Omega &= \{-\infty < x < \infty, -L < y < L, -H < z < 0\} \end{split}$$

Обозначим $\Omega_T = \Omega \times [0,T], \ \Pi_T = \Pi \times [0,T], \ \text{где } t \in [0,T]$ – время.

І. Часть задачи, связанная с определением колебаний битого льда

$$Mw_{tt} = -P(x, y, t) + p(x, y, 0, t)$$
 $(x, y, t) \in \Pi_T$

$$w(x, y, 0) = w^{1}(x, y), \quad w_{t}(x, y, 0) = w^{2}(x, y) \qquad (x, y) \in \Pi$$

$$w = 0, \quad w_x = 0 \qquad (x \to \infty)$$

$$p(x, y, 0, t) = -\rho_{\ell}gw(x, y, t) - \rho_{\ell}\varphi_{t}(x, y, 0, t)$$

$$M = \rho_i h_i$$

II. Гидродинамическая часть задачи

$$\Delta \varphi(x, y, z, t) = 0$$
 $(x, y, z, t) \in \Omega_T$

$$\varphi_y = 0 \quad (y = \pm L), \qquad \varphi_z = 0 \quad (z = -H)$$

$$\varphi_z(x, y, 0, t) = w_t(x, y, t)$$

$$\varphi(x, y, z, t), \quad \varphi_x(x, y, z, t) \to 0, \qquad (x \to \infty)$$

Постановка залачи

І. Часть задачи, связанная с определением колебаний битого льда

$$Mw_{tt} = -P(x, y, t) + p(x, y, 0, t) \qquad (x, y, t) \in \Pi_T$$

$$w(x, y, 0) = w^1(x, y), \quad w_t(x, y, 0) = w^2(x, y) \qquad (x, y) \in \Pi$$

$$w = 0, \quad w_x = 0 \qquad (x \to \infty)$$

$$p(x, y, 0, t) = -\rho_{\ell}gw(x, y, t) - \rho_{\ell}\varphi_{t}(x, y, 0, t)$$

$$M = \rho_i h_i$$

$$P(x, y, t) = P_0 P_1 \left(\frac{x - Ut}{L}\right) P_2 \left(\frac{y}{L}\right)$$

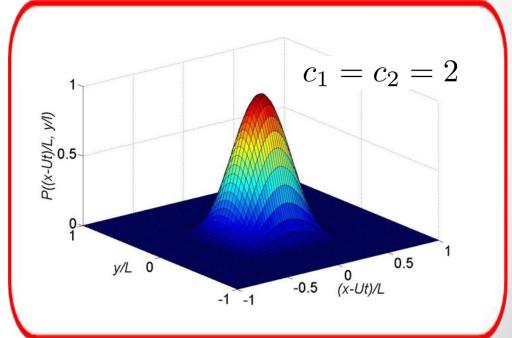
$$P_1(\tilde{x}) = \frac{(\cos(\pi c_1 \tilde{x}) + 1)}{2} \quad (c_1 |\tilde{x}| < 1),$$

$$P_1(\tilde{x}) = 0 \quad (c_1 |\tilde{x}| \ge 1),$$

$$\tilde{x} = \frac{(x - Ut)}{L}$$

$$P_2(\tilde{y}) = \frac{(\cos(\pi c_2 \tilde{y}) + 1)}{2} \quad (c_2|\tilde{y}| < 1), P_2(\tilde{y}) = 0 \quad (c_2|\tilde{y}| \ge 1), \quad \tilde{y} = \frac{y}{L}$$

 c_1, c_2 — параметры, характеризующие область давления



Единственность классического решения

Теорема. Классическое решение рассматриваемой задачи единственно.

Пара функций $w=w_1-w_2,\, \varphi=\varphi_1-\varphi_2$ удовлетворяет следующей начально-краевой задаче

$$Mw_{tt} = -\rho_{\ell}gw - \rho_{\ell}\varphi_{t}(x, y, 0, t) \qquad (x, y, t) \in \Pi_{T},$$
$$\Delta\varphi(x, y, z, t) = 0 \qquad (x, y, z, t) \in \Omega_{T},$$

$$\varphi_z = w_t \quad (z = 0), \qquad \varphi_y = 0 \quad (y = \pm L), \qquad \varphi_z = 0 \quad (z = -H),$$

$$\varphi(x, y, z, t), \quad \varphi_x(x, y, z, t), \quad w(x, y, t), \quad w_x(x, y, t) \to \infty \qquad (x \to \infty),$$

$$w(x, y, 0) = 0,$$
 $w_t(x, y, 0) = 0$

Единственность классического решения

Умножаем уравнение колебания битого льда на w_t , интегрируем по Π

$$\int_{\Pi} \frac{d}{dt} \left(\frac{M}{2} w_t^2 + \frac{1}{2} g \rho_{\ell} w^2 \right) d\Pi = -\rho_{\ell} \int_{\Omega} \nabla \varphi \nabla \varphi_t d\Pi$$

$$\left| \frac{d}{dt} \left[\int_{\Pi} \left(\frac{M}{2} w_t^2 + \frac{1}{2} g \rho_\ell w^2 \right) d\Pi + \rho_\ell \frac{1}{2} \int_{\Omega} |\nabla \varphi|^2 d\Omega \right] = 0 \right|$$

$$\int_{\Pi} \left(\frac{M}{2} w_t^2 + \frac{1}{2} g \rho_\ell w^2 \right) d\Pi + \rho_\ell \frac{1}{2} \int_{\Omega} |\nabla \varphi|^2 d\Omega = 0$$

$$\frac{M}{2}w_t^2 + \frac{1}{2}g\rho_\ell w^2 = 0 \Rightarrow \frac{M}{2}w_t^2 = 0, \quad \frac{1}{2}g\rho_\ell w^2 = 0$$

$$\nabla \varphi = 0, \quad \varphi = 0$$

$$w = w_1 - w_2 = 0 \Rightarrow w_1 = w_2$$

$$\varphi = \varphi_1 - \varphi_2 = 0 \Rightarrow \varphi_1 = \varphi_2$$

Метод решения. Преобразование Фурье вдоль канала

Преобразование Фурье для прогибов битого льда вдоль оси x имеет вид

$$w^{F}(\xi, y, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} w(x, y, t) e^{-i\xi x} dx \qquad w(x, y, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} w^{F}(\xi, y, t) e^{i\xi x} dx$$

Уравнение прогибов битого льда для образа Фурье w^F

$$Mw_{tt}^{F} = -\rho_{\ell}\varphi_{t}^{F} - \rho_{\ell}gw^{F} - P^{F}(\xi, y)e^{-i\xi Ut}$$
$$w^{F}(x, y, 0) = w_{0}^{F}(\xi, y), \qquad w_{t}^{F}(\xi, y, 0) = 0$$

$$\begin{split} \varphi_{yy}^F + \varphi_{zz}^F &= \xi^2 \varphi^F & (-L < y < L, -H < z < 0) \\ \varphi_z^F &= w^F & (z = 0), \quad \varphi_y^F = 0 \quad (y \pm L), \\ \varphi_z^F &= 0 \quad (z = -H), \\ \varphi^F &= 0, \quad \varphi_t^F = 0 \quad (t = 0). \end{split}$$

9 /18

Метод решения. Метод разделения переменных

 $\psi_n(\xi, y) = \cos(\frac{\pi n y}{L})$

Прогиб битого льда,

$$w^{F}(\xi, y, t) = \sum_{n=0}^{\infty} a_n(\xi, t) \overline{\psi_n(y)}$$

Потенциал скорости

$$\varphi^{F}(\xi, y, z, t) = \sum_{n=1}^{\infty} \frac{a_{n,t}(\xi, t)\psi_{n}(y)\cosh(\sqrt{\pi^{2}n^{2} + \xi^{2}}(H+z))}{\sqrt{\pi^{2}n^{2} + \xi^{2}}\sinh(\sqrt{\pi^{2}n^{2} + \xi^{2}}H)}$$

Уравнение колебания битого льда

$$M \sum_{n=1}^{\infty} a_{n,tt} \cos(\frac{\pi n y}{L}) = -\rho_{\ell} \sum_{n=1}^{\infty} \frac{a_{n,tt}(\xi,t)\psi_{n}(y) \cosh(\sqrt{\pi^{2}n^{2}+\xi^{2}}(H+z))}{\sqrt{\pi^{2}n^{2}+\xi^{2}} \sinh(\sqrt{\pi^{2}n^{2}+\xi^{2}}H)} - \rho_{\ell} g \sum_{n=1}^{\infty} a_{n}(\xi,t) \cos(\frac{\pi n y}{L}) - P^{F}(\xi,y) e^{-i\xi U t}$$

Поиск коэффициентов разложения w^F на колебания поперек канала

$$\frac{d^{2}a_{n}}{dt^{2}} + w_{n}^{2}(\xi)a_{n} = H_{n}(\xi)e^{-i\xi Ut}$$

$$H_{n}(\xi) = \frac{P_{n}(\xi)\sqrt{(\frac{\pi n}{L})^{2} + \xi^{2}}}{2L(M\sqrt{(\frac{\pi n}{L})^{2} + \xi^{2}} + \rho_{\ell}\coth(\sqrt{(\frac{\pi n}{L})^{2} + \xi^{2}}H))}$$

Начальные условия

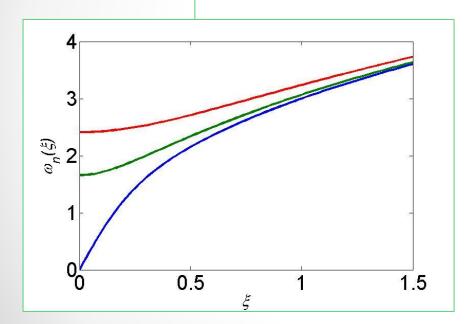
$$a_n(\xi,0) = \frac{H_n(\xi)}{\omega_n^2(\xi)}, \qquad \frac{da_n}{dt}(\xi,0) = 0$$

$$a_n(\xi,t) = \frac{H_n U \xi}{2\omega_n^2} \left(\frac{e^{i\omega_n t}}{\omega_n + \xi U} - \frac{e^{-i\omega_n t}}{\omega_n - \xi U} \right) + \frac{H_n e^{-i\xi U t}}{\omega_n^2 - \xi^2 U^2}$$

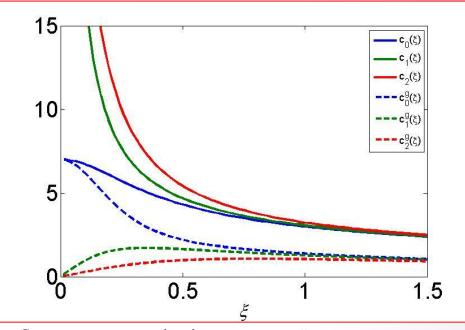
$$\omega_n(\xi) = \sqrt{\frac{\rho_\ell g \sqrt{\mu_n + \xi^2}}{M \sqrt{\mu_n + \xi^2} + \rho_\ell \coth(\sqrt{\mu_n + \xi^2} H)}}$$

Дисперсионные соотношения периодических волн, распространяющихся вдоль канала

$$\omega_n(\xi) = \sqrt{\frac{\rho_{\ell}g\sqrt{\mu_n + \xi^2}}{M\sqrt{\mu_n + \xi^2} + \rho_{\ell} \coth(\sqrt{\mu_n + \xi^2}H)}}$$



$$\omega_0(\xi) < \omega_1(\xi) < \omega_2(\xi) < \dots$$



Сплошные линии –график фазовых скоростей, прерывистые линии – график групповых скоростей

$$c_n(\xi) = \frac{\omega_n}{\xi}$$

$$c_n^g(\xi) = \frac{d\omega_n}{d\xi}$$

$$M = \rho_i h_i$$
 $ho_\ell = 1024 \ \mathrm{kg/m}^3$
 $ho_i = 917 \ \mathrm{kg/m}^3$
 $L = 10 \ \mathrm{m}$
 $H = 5 \ \mathrm{m}$
 $h_i = 0.1 \ \mathrm{m}$
 $U = 5 \ \mathrm{m/c}$

Обратное преобразование Фурье. Поведение прогибов битого льда при больших

временах Прогиб битого льда w(X,y,t) в движущейся системе координат

$$w(X, y, t) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} a_n(\xi, t) \psi_n(y) e^{i\xi X} d\xi$$

$$[X = x - Ut]$$

$$w_n(X, y, t) = \int_{-\infty}^{+\infty} a_n(\xi, t) \psi_n(y) e^{i\xi X} d\xi =$$

$$= \int_{0}^{\infty} H_n(\xi) \psi_n(y) \left(\frac{2\cos(\xi X)}{\omega_n^2 - U^2 \xi^2} + \frac{e^{i\xi X} U \xi}{2\omega_n^2} \left[\frac{e^{it(\omega_n + U \xi)}}{\omega_n + U \xi} - \frac{e^{-it(\omega_n - U \xi)}}{\omega_n - U \xi} \right] -$$

$$- \frac{e^{-i\xi X} U \xi}{2\omega_n^2} \left[\frac{e^{it(\omega_n - U \xi)}}{\omega_n - U \xi} - \frac{e^{-it(\omega_n + U \xi)}}{\omega_n + U \xi} \right] d\xi$$

0.4

0.6

8.0

0.2

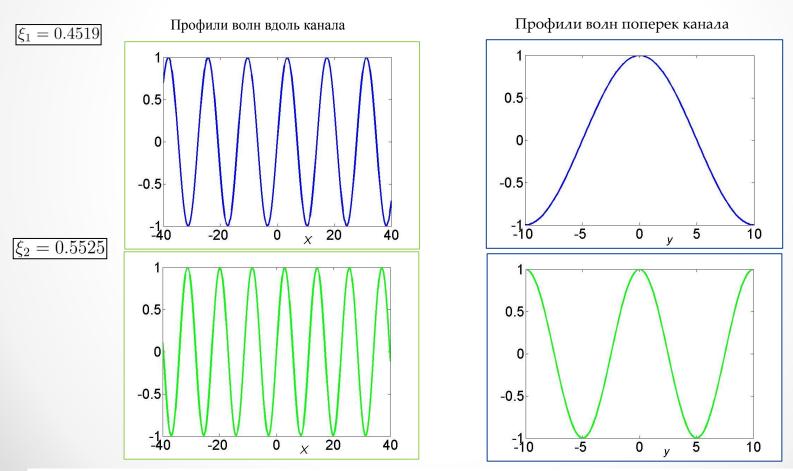
Профили волн вдоль и поперек канала

$$\left| w_n(X, y, t) \right|_{t \to \infty} = w_n^{loc}(X, y) - A_n \psi_n(y) \sin(\xi_n X) G_n(X)$$

$$A_n = \frac{2\pi H_n(\xi_n)}{\langle x \rangle \langle x$$

$$A_n = \frac{2\pi H_n(\xi_n)}{(\omega'_n(\xi_n) - U)\xi_n U}$$

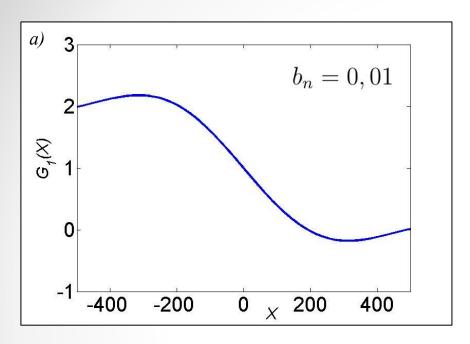
$$G_n(X) = -sign(C_g^n - U) - \frac{2}{\pi}sign(X) \int_0^{|X|b_n} \frac{\sin(z)}{z} dz$$

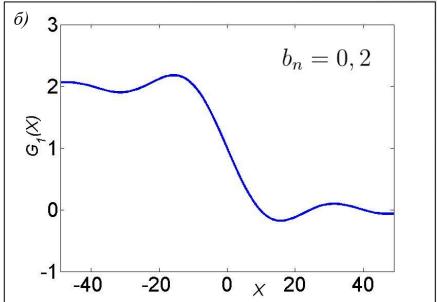


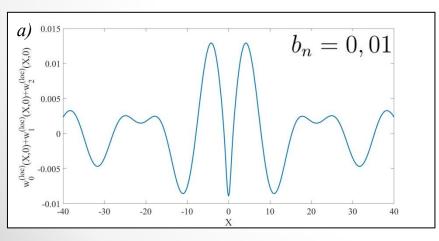
• Erdelyi, A. Asymptotic expansions / A. Erdelyi. – New York: Dover Publications, Inc. – 1956.

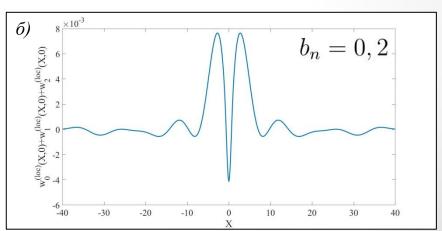
14/18

Вычисление функции срезки и локальных прогибов

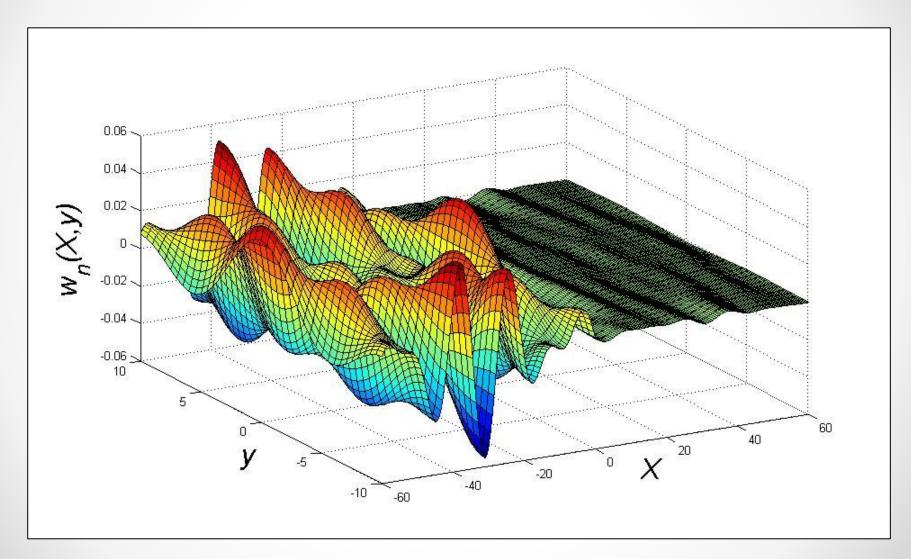








Прогибы битого льда для суммы первых трех интегралов



Заключение

Рассмотрена нестационарная задача для определения прогибов битого льда в канале под действием внешней нагрузки, движущейся с постоянной скоростью вдоль центральной линии канала. Доказана теорема единственности классического решения рассматриваемой задачи. Исследовано поведение колебаний битого льда в канале под действием внешней нагрузки при больших временах. Решение получено в виде формулы, дающей простую интерпретацию для анализа формы колебаний битого льда. Получено, что при больших временах колебания битого льда состоят из волн, распространяющихся сзади нагрузки, таких волн в канале будет счетное число, и из локальных прогибов в области нагрузки, которые затухают при отдалении от нагрузки.

Автор принимал активное участие в получении результатов: постановке задачи, численном и аналитическом исследовании, анализе и обсуждении полученных результатов, а также в оформлении результатов в виде публикаций и научных докладов.

Основные публикации

1. Завьялова К. Н., Шишмарев К. А. Об одной задаче движения внешней нагрузки по вязкому битому льду в канале. Известия АлтГУ, Барнаул, 2019, 4(108), с. 76-81.

https://doi.org/10.14258/izvasu(2019)4-11.

- 2. Завьялова К. Н., Шишмарев К. А. Модели колебаний тонкого битого льда в канале. Труды семинара по геометрии и математическому моделированию. Барнаул, 2019, (5), с. 60-66. http://journal.asu.ru/psgmm/article/view/7240.
- 3. Завьялова К. Н., Шишмарев К. А. Математическая модель нестационарных колебаний битого льда в канале. Сборник трудов всероссийской конференции по математике МАК 2019. Издательство АГУ, Барнаул, 2019, с. 45-49.
- 4. Завьялова К.Н., Шишмерев К. А., Хабахпашева Т. И. Колебания битого льда в канале. Сборник научных статей международной конференции "Ломоносовские чтения на Алтае: фундаментальные проблемы науки и техники" 2018, Барнаул, 13-16 ноября, 2018. с. 474-482. https://www.sites.google.com/site/lomchten/.
- 5. Завьялова К.Н., Шишмерев К. А. Единственность решения задачи о колебаниях битого льда в канале. Сборник научных статей международной конференции "Ломоносовские чтения на Алтае: фундаментальные проблемы науки и техники" 2018, Барнаул, 13-16 ноября, 2018. с. 469-473. https://www.sites.google.com/site/lomchten/.
- 6. Завьялова К. Н., Шишмарев К. А., Хабахпашева Т. И. Движение внешней нагрузки по битому льду в канале. Известия АлтГУ, Барнаул, 2018, 4 (102), с.73-78.

http://izvestiya.asu.ru/index.php/iz/article/view/%282018%294-13.

DOI: 10.14258/izvasu(2018)4-13.

- 7. Завьялова К. Н., Шишмарев К. А. Исследование формирования вынужденных гравитационных волн в канале, покрытом битым льдом. Сборник трудов всероссийской конференции по математике МАК 2018. Издательство АГУ, Барнаул, 2018, с. 65-68.
- 8. Шишмарев К. А., Завьялова К. Н. Свободные и вынужденные волны в канале, покрытом битым льдом. Сборник трудов всероссийской конференции по математике МАК 2017. Издательство АГУ, Барнаул, 2017, с. 96-99

Контакты

Завьялова К.Н. kristina-zavyalova-1996@mail.ru