
Software Quality Assurance
and Testing

Lecture 1

Outline

• Software Quality Assurance and Testing Fundamentals
• Software Testing Types: Functional and Non-Functional Testing Types
• Black-Box testing
• White-Box Testing
• Sanity Testing
• Smoke Testing
• Regression Testing
• Bugs. Defects.
• Bug Life Cycle
• Bug Reporting and Tracking

Software Quality Assurance
Fundamentals

Some Observations
• It is impossible to completely test any nontrivial

module or any system
• Theoretical limitations: Halting prob
• Practical limitations: Prohibitive in time and cost

• Testing can only show the presence of bugs, not their
absence (Dijkstra)

loop 200 times

total number of execution paths?

Fault Handling Techniques

Testing

Fault Handling

Fault
Avoidance

Fault Tolerance
Fault Detection

Debugging

Unit
Testing

Integration
Testing

System
Testing

Verificatio
n

Configurati
on

Managemen
t

Atomic
Transactions

Modular
Redundancy

Correctness
Debugging

Performanc
e

Debugging

Reviews
Design

Methodolog
y

Quality Assurance encompasses Testing

Usability Testing

Quality Assurance

Testing

Prototype
Testing

Scenario
Testing

Product
Testing

Fault
Avoidance

Fault Tolerance

Fault Detection

Debugging

Unit
Testing

Integration
Testing

System
Testing

Verification

Configurati
on

Managemen
t

Atomic
Transactions

Modular
Redundancy

Correctness
Debugging

Performanc
e

Debugging

Reviews

Walkthrough Inspection

Software Quality Assurance (SQA)

• It is the ongoing process that ensures the software product meets
and complies with the organization's established and standardized
quality specifications (quality factors, quality metrics)

• SQA incorporates all software development processes starting from
defining requirements to coding until release. Its prime goal is to
ensure quality.

Software Quality Assurance Plan

Abbreviated as SQAP, the
software quality assurance
plan comprises the
procedures, techniques,
and tools that are
employed to make sure
that a product or service
aligns with the
requirements defined in the
SRS(software requirement
specification).

SQA Activities
#1) Creating an SQA Management Plan: The foremost activity includes laying down a proper plan regarding
how the SQA will be carried out in your project. Along with what SQA approach you are going to follow, what
engineering activities will be carried out, and it also includes ensuring that you have the right talent mix in
your team.

#2) Setting the Checkpoints: The SQA team sets up different checkpoints according to which it evaluates the
quality of the project activities at each checkpoint/project stage. This ensures regular quality inspection and
working as per the schedule.

#3) Apply software Engineering Techniques: Applying some software engineering techniques aids a software
designer in achieving high-quality specifications. For gathering information, a designer may use techniques
such as interviews and FAST (Functional Analysis System Technique). Later, based on the information gathered,
the software designer can prepare the project estimation using techniques like WBS (work breakdown
structure), SLOC (source line of codes), and FP(functional point) estimation.

#4) Executing Formal Technical Reviews: An FTR is done to evaluate the quality and design of the prototype.
In this process, a meeting is conducted with the technical staff to discuss the actual quality requirements of
the software and the design quality of the prototype. This activity helps in detecting errors in the early phase
of SDLC and reduces rework effort in the later phases.

#5) Having a Multi-Testing Strategy: By multi-testing strategy, we mean that one should not rely on any single
testing approach, instead, multiple types of testing should be performed so that the software product can be
tested well from all angles to ensure better quality.

SQA Activities
#6) Enforcing Process Adherence: This activity insists on the need for process adherence during the software
development process. The development process should also stick to the defined procedures.

#7) Controlling Change: In this activity, we use a mix of manual procedures and automated tools to have a
mechanism for change control. By validating the change requests, evaluating the nature of change, and
controlling the change effect, it is ensured that the software quality is maintained during the development and
maintenance phases.

#8) Measure Change Impact: If any defect is reported by the QA team, then the concerned team fixes the
defect. After this, the QA team should determine the impact of the change which is brought by this defect fix.
They need to test not only if the change has fixed the defect, but also if the change is compatible with the whole
project. For this purpose, we use software quality metrics that allow managers and developers to observe the
activities and proposed changes from the beginning till the end of SDLC and initiate corrective action wherever
required.

#9) Performing SQA Audits: The SQA audit inspects the entire actual SDLC process followed by comparing it
against the established process. It also checks whether whatever was reported by the team in the status reports
was actually performed or not. This activity also exposes any non-compliance issues.

#10) Maintaining Records and Reports: It is crucial to keep the necessary documentation related to SQA and
share the required SQA information with the stakeholders. The test results, audit results, review reports, change
requests documentation, etc. should be kept for future reference.

#11) Manage Good Relations: In fact, it is very important to maintain harmony between the QA and the
development team. We often hear that testers and developers often feel superior to each other. This should be
avoided as it can affect the overall project quality.

Software Quality
Assurance
Standards

• SO 9000: This standard is
based on seven quality
management principles which
help the organizations to
ensure that their products or
services are aligned with the
customer needs.

• 7 principles of ISO 9000 are
depicted in the below image:

• CMMI level: CMMI stands
for Capability maturity
model Integration. This
model originated in software
engineering. It can be
employed to direct process
improvement throughout a
project, department, or
entire organization.

• 5 CMMI levels and their
characteristics are
described in the below
image:

Software Quality
Assurance
Standards

• Test Maturity Model
integration (TMMi): Based on
CMMi, this model focuses on
maturity levels in software
quality management and
testing.

• 5 TMMi levels are depicted in
the below image:

Software Quality
Assurance
Standards

Elements of Software Quality Assurance

There are 10 essential elements of SQA which are enlisted below for your reference:
• Software engineering Standards

• Technical reviews and audits

• Software Testing for quality control

• Error collection and analysis

• Change management

• Educational programs

• Vendor management

• Security management

• Safety

• Risk management

Software Testing Types

Functional and Non-Functional testing

Non-Functional testing
 This testing is defined as a type of Software testing to check non-functional
aspects (performance, usability, reliability, etc) of a software application. It is
designed to test the readiness of a system as per nonfunctional parameters
which are never addressed by functional testing.

Non-Functional testing

Test Case # Test Case Domain

1
Application load time should not
be more than 5 secs up to 1000
users accessing it simultaneously

Performance Testing

2
Software should be installable on
all versions of Windows and Mac

Compatibility Testing

3
All web images should have alt
tags

Accessibility testing.

Functional Testing

• It is a type of software testing that validates the software system
against the functional requirements/specifications. The purpose of
Functional tests is to test each function of the software application,
by providing appropriate input, verifying the output against the
Functional requirements.

• Functional testing mainly involves black box testing and it is not
concerned about the source code of the application. This testing
checks User Interface, APIs, Database, Security, Client/Server
communication and other functionality of the Application Under Test.
The testing can be done either manually or using automation.

Functional Vs Non-Functional Testing
Functional Testing Non-Functional Testing

Functional testing is performed using the functional
specification provided by the client and verifies the
system against the functional requirements.

Non-Functional testing checks the Performance,
reliability, scalability and other non-functional aspects of
the software system.

Functional testing is executed first
Non-functional testing should be performed after
functional testing

Manual Testing or automation tools can be used for
functional testing

Using tools will be effective for this testing

Business requirements are the inputs to functional
testing

Performance parameters like speed, scalability are inputs
to non-functional testing.

Functional testing describes what the product does
Nonfunctional testing describes how good the product
works

Easy to do Manual Testing Tough to do Manual Testing

• Unit Testing, Smoke Testing, Sanity Testing,
Integration Testing, White box testing, Black Box
testing, User Acceptance testing, Regression Testing

Performance Testing, Load Testing, Volume Testing, Stress
Testing, Security Testing, Installation Testing, Penetration
Testing, Compatibility Testing, Migration Testing

Testing Types

Tested
Subsystem

Subsyst
em

Code

FunctionalIntegration

Unit

Tested
Subsystem

Require
ments

Analysis
Docume

nt

System
Design

Document

Tested Subsystem

Test Test

Test

Unit
Test

Unit
Test

User
Manual

Requirements
Analysis

Document

Subsyst
em

Code

Subsyst
em

Code

All tests by developer

Functioning
System

Integrated
Subsystems

Global
Requirements

Testing Types continued

User’s
understanding

Tests by developer

Performance Acceptance

Client’s
Understanding

of Requirements

Test

Functioning
System

Test
Installation

User
Environment

Test

System in
Use

Usable
System

Validated
System

Accepted
System

Tests (?) by user

Tests by client

Levels of Testing in V Model

system
requirements

system
integration

software
requirements

preliminary
design

detailed
design

code &
debug

acceptance
test

software
integration

component
test

unit
test

Time

Le
ve

l o
f

ab
st

ra
ct

io
n

analyze and design

test and integrate

N.B.: component test vs. unit test; acceptance test vs. system integration

Types of Testing
• Unit Testing:

• Individual subsystem
• Carried out by developers
• Goal: Confirm that subsystems is correctly coded and carries

out the intended functionality

• Integration Testing:
• Groups of subsystems (collection of classes) and eventually the

entire system
• Carried out by developers
• Goal: Test the interface among the subsystem

Types of Testing

• System Testing:
• The entire system
• Carried out by developers
• Goal: Determine if the system meets the requirements (functional and global)

• Acceptance Testing:
• Evaluates the system delivered by developers
• Carried out by the client. May involve executing typical transactions on site

on a trial basis
• Goal: Demonstrate that the system meets customer requirements and is

ready to use

2 kinds of Acceptance testing

Unit Testing
• Informal:

• Incremental coding

• Static Analysis:
• Hand execution: Reading the source code
• Walk-Through (informal presentation to others)
• Code Inspection (formal presentation to others)
• Automated Tools checking for

• syntactic and semantic errors
• departure from coding standards

• Dynamic Analysis:
• Black-box testing (Test the input/output behavior)
• White-box testing (Test the internal logic of the subsystem or

object)
• Data-structure based testing (Data types determine test cases)

Which is more effective, static or dynamic analysis?

Write a little, test a little

Black-Box vs. White-Box Testing

 Black-box Testing
• Focus: I/O behavior. If for any given input, we can

predict the output, then the module passes the test.
• Almost always impossible to generate all possible inputs

("test cases")

• Goal: Reduce number of test cases by equivalence
partitioning:

• Divide input conditions into equivalence classes
• Choose test cases for each equivalence class. (Example: If

an object is supposed to accept a negative number, testing
one negative number is enough)
❑ If x = 3 then …

What would be the equivalence classes?

❑ If x > -5 and x < 5 then …

why?

Black-box Testing (Continued)
• Selection of equivalence classes (No rules, only

guidelines):
• Input is valid across range of values. Select test cases from 3

equivalence classes:
• Below the range
• Within the range
• Above the range

• Input is valid if it is from a discrete set. Select test cases from 2
equivalence classes:

• Valid discrete value
• Invalid discrete value

• Another solution to select only a limited amount of test
cases:

• Get knowledge about the inner workings of the unit being
tested => white-box testing

Are these complete?

White-box Testing

•Focus: Thoroughness (Coverage). Every statement in the
component is executed at least once.

•Four types of white-box testing
• Statement Testing
• Loop Testing
• Path Testing
• Branch Testing

if (i = TRUE) printf("YES\n"); else printf("NO\n");
Test cases: 1) i = TRUE; 2) i = FALSE

White-box Testing (Continued)
• Statement Testing (Algebraic Testing): Test single statements

• Loop Testing:
• Cause execution of the loop to be skipped completely. (Exception: Repeat

loops)
• Loop to be executed exactly once
• Loop to be executed more than once

• Path testing:
• Make sure all paths in the program are executed

• Branch Testing (Conditional Testing): Make sure that each possible
outcome from a condition is tested at least once

White-Box Testing: Loop Testing

Nested
Loops

Concatenated
 Loops Unstructured

Loops

Simple
loop

[Pressman]

/*Read in and sum the
scores*/

White-box Testing Example
FindMean(float Mean, FILE ScoreFile)
{ SumOfScores = 0.0; NumberOfScores = 0; Mean =
0; Read(ScoreFile, Score);
 while (! EOF(ScoreFile) {

 if (Score > 0.0)
{ SumOfScores = SumOfScores +

Score;
NumberOfScores++; }

 Read(ScoreFile,
Score); }

 /* Compute the mean and print the result
*/ if (NumberOfScores > 0) {
 Mean =

SumOfScores/NumberOfScores;printf("The mean score is %f \n",
Mean); } else
printf("No scores found in
file\n");}

White-box Testing Example: Determining the
Paths FindMean (FILE ScoreFile)

{ float SumOfScores = 0.0;
int NumberOfScores = 0;
float Mean=0.0; float Score;
Read(ScoreFile, Score);
while (! EOF(ScoreFile) {

if (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;
}

Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {

Mean = SumOfScores / NumberOfScores;
printf(“ The mean score is %f\n”,
Mean);

} else
printf (“No scores found in file\n”);

}

1

2
3

4

5

7

6

8

9

Constructing the Logic Flow Diagram

Finding the Test Cases
Start

2

3

4 5

6

7

8 9

 Exit

1

b

d e

gf

i j

h
c

k l

a (Covered by any data)

(Data set must

(Data set must contain at least one value)

 be empty)

(Total score > 0.0)(Total score < 0.0)

(Positive score) (Negative score)

(Reached if either f or
 e is reached)

Comparison of White & Black-box Testing

• White-box Testing:
• Potentially infinite number of paths have to

be tested

• White-box testing often tests what is done,
instead of what should be done

• Cannot detect missing use cases

• Black-box Testing:
• Potential combinatorical explosion of test

cases (valid & invalid data)

• Often not clear whether the selected test
cases uncover a particular error

• Does not discover extraneous use cases
("features")

• Both types of testing are needed

• White-box testing and black box testing are
the extreme ends of a testing continuum.

• Any choice of test case lies in between and
depends on the following:

• Number of possible logical paths

• Nature of input data

• Amount of computation

• Complexity of algorithms and data structures

Sanity vs. Smoke Testing

What is a Software Build?

If you are developing a simple computer program which consists of only
one source code file, you merely need to compile and link this one file,
to produce an executable file. This process is very simple.
Usually, this is not the case. A typical Software Project consists of
hundreds or even thousands of source code files. Creating an
executable program from these source files is a complicated and
time-consuming task.

You need to use “build” software to create an executable program and
the process is called ” Software Build”

Smoke Testing

• Smoke Testing is a software testing technique performed post software
build to verify that the critical functionalities of software are working fine.
It is executed before any detailed functional or regression tests are
executed. The main purpose of smoke testing is to reject a software
application with defects so that QA team does not waste time testing
broken software application.

• In smoke testing, the test cases chose to cover the most important
functionality or component of the system. The objective is not to perform
exhaustive testing, but to verify that the critical functionalities of the
system are working fine.
For Example, a typical smoke test would be – Verify that the application
launches successfully, Check that the GUI is responsive … etc.

Sanity Testing

• Sanity testing is a kind of Software Testing performed after receiving a
software build, with minor changes in code, or functionality, to
ascertain that the bugs have been fixed and no further issues are
introduced due to these changes. The goal is to determine that the
proposed functionality works roughly as expected. If sanity test fails,
the build is rejected to save the time and costs involved in a more
rigorous testing.

• The objective is “not” to verify thoroughly the new functionality but
to determine that the developer has applied some rationality (sanity)
while producing the software. For instance, if your scientific calculator
gives the result of 2 + 2 =5! Then, there is no point testing the
advanced functionalities like sin 30 + cos 50.

KEY DIFFERENCE

• Smoke Testing has a goal to verify “stability” whereas Sanity Testing has a
goal to verify “rationality”.

• Smoke Testing is done by both developers or testers whereas Sanity Testing
is done by testers.

• Smoke Testing verifies the critical functionalities of the system whereas
Sanity Testing verifies the new functionality like bug fixes.

• Smoke testing is a subset of acceptance testing whereas Sanity testing is a
subset of Regression Testing.

• Smoke testing is documented or scripted whereas Sanity testing isn’t.

• Smoke testing verifies the entire system from end to end whereas Sanity
Testing verifies only a particular component.

Smoke Testing Sanity Testing

Smoke Testing is performed to ascertain that the
critical functionalities of the program is working
fine

Sanity Testing is done to check the new
functionality/bugs have been fixed

The objective of this testing is to verify the
“stability” of the system in order to proceed with
more rigorous testing

The objective of the testing is to verify the
“rationality” of the system in order to proceed
with more rigorous testing

This testing is performed by the developers or
testers

Sanity testing in software testing is usually
performed by testers

Smoke testing is usually documented or scripted
Sanity testing is usually not documented and is
unscripted

Smoke testing is a subset of Acceptance testing Sanity testing is a subset of Regression Testing

Smoke testing exercises the entire system from
end to end

Sanity testing exercises only the particular
component of the entire system

Smoke testing is like General Health Check Up Sanity Testing is like specialized health check up

Points to note

• Both Sanity and Smoke testing are ways to avoid wasting time and effort by quickly
determining whether an application is too flawed to merit any rigorous testing.

• Smoke Testing is also called tester acceptance testing.

• Smoke testing performed on a particular build is also known as a build verification test.

• One of the best industry practice is to conduct a Daily build and smoke test in software
projects.

• Both smoke and sanity tests can be executed manually or using an automation
tool. When automated tools are used, the tests are often initiated by the same process
that generates the build itself.

• As per the needs of testing, you may have to execute both Sanity and Smoke Tests in the
software build. In such cases, you will first execute Smoke tests and then go ahead with
Sanity Testing. In industry, test cases for Sanity Testing are commonly combined with that
for smoke tests, to speed up test execution. Hence, it’s a common that the terms are often
confused and used interchangeably

What is Regression Testing?

• Regression Testing is defined as a type of software testing to
confirm that a recent program or code change has not adversely
affected existing features. Regression Testing is nothing but a
full or partial selection of already executed test cases which are
re-executed to ensure existing functionalities work fine.

• This testing is done to make sure that new code changes
should not have side effects on the existing functionalities. It
ensures that the old code still works once the latest code
changes are done.

Regression Testing

Selecting test cases for regression
testing
• Test cases which have frequent defects
• Functionalities which are more visible to the users
• Test cases which verify core features of the product
• Test cases of Functionalities which has undergone more and recent
changes

• All Integration Test Cases
• All Complex Test Cases
• Boundary value test cases
• A sample of Successful test cases
• A sample of Failure test cases

Difference between Re-Testing and Regression
Testing

• Retesting is a process to check specific test cases that are found with
bug/s in the final execution. Generally, testers find these bugs while testing
the software application and assign it to the developers to fix it. Then the
developers fix the bug/s and assign it back to the testers for verification

• Regression testing is performed for passed test cases while Retesting is
done only for failed test cases.

• Regression testing checks for unexpected side-effects while Re-testing
makes sure that the original fault has been corrected.

• Regression Testing doesn’t include defect verification whereas Re-testing
includes defect verification.

• Regression testing is known as generic testing whereas Re-testing is
planned testing.

• Regression Testing is possible with the use of automation whereas
Re-testing is not possible with automation.

Regression Testing Re-testing

•Regression Testing is carried out to confirm whether a recent
program or code change has not adversely affected existing
features

•Re-testing is carried out to confirm the test cases that failed
in the final execution are passing after the defects are fixed

•The purpose of Regression Testing is that new code changes
should not have any side effects to existing functionalities

•Re-testing is done on the basis of the Defect fixes

•Defect verification is not the part of Regression Testing •Defect verification is the part of re-testing

•Based on the project and availability of resources, Regression
Testing can be carried out parallel with Re-testing

•Priority of re-testing is higher than regression testing, so it is
carried out before regression testing

•You can do automation for regression testing, Manual
Testing could be expensive and time-consuming

•You cannot automate the test cases for Retesting

•Regression testing is done for passed test cases •Retesting is done only for failed test cases

•Regression testing checks for unexpected side-effects
•Re-testing makes sure that the original fault has been
corrected

•Regression testing is only done when there is any
modification or changes become mandatory in an existing
project

•Re-testing executes a defect with the same data and the
same environment with different inputs with a new build

•Test cases for regression testing can be obtained from the
functional specification, user tutorials and manuals, and
defect reports in regards to corrected problems

•Test cases for retesting cannot be obtained before start
testing.

Bug definition

• A bug is the consequence/outcome of a coding fault.
• A Defect in Software Testing is a variation or deviation of the software

application from end user’s requirements or original business requirements.
A software defect is an error in coding which causes incorrect or
unexpected results from a software program which does not meet actual
requirements. Testers might come across such defects while executing the
test cases.

• These two terms have very thin line of difference, In the Industry both are
faults that need to be fixed and so interchangeably used by some of
the testing teams.

• When testers execute the test cases, they might come across such test
results which are contradictory to expected results. This variation in test
results is referred to as a Software Defect. These defects or variations are
referred by different names in different organizations like issues, problems,
bugs or incidents.

1. Tester finds the defect
2. Status assigned to defect- New
3. A defect is forwarded to Project Manager for analyze
4. Project Manager decides whether a defect is valid
5. Here the defect is not valid- a status is given “Rejected.”
6. So, project manager assigns a status rejected. If the defect is not rejected

then the next step is to check whether it is in scope. Suppose we have
another function- email functionality for the same application, and you find a
problem with that. But it is not a part of the current release when such defects
are assigned as a postponed or deferred status.

7. Next, the manager verifies whether a similar defect was raised earlier. If yes
defect is assigned a status duplicate.

8. If no the defect is assigned to the developer who starts fixing the code. During
this stage, the defect is assigned a status in- progress.

9. Once the code is fixed. A defect is assigned a status fixed
10. Next, the tester will re-test the code. In case, the Test case passes the defect

is closed. If the test cases fail again, the defect is re-opened and assigned to
the developer.

11. Consider a situation where during the 1st release of Flight Reservation a
defect was found in Fax order that was fixed and assigned a status closed.
During the second upgrade release the same defect again re-surfaced. In
such cases, a closed defect will be re-opened.

Defect/Bug Life Cycle in
Software Testing

Test Documentation: a Bug Report
Defect_ID – Unique identification number for the defect.
Defect Description – Detailed description of the Defect including information about the module
in which Defect was found.
Version – Version of the application in which defect was found.
Steps – Detailed steps along with screenshots with which the developer can reproduce the
defects.
Date Raised – Date when the defect is raised
Reference– where in you Provide reference to the documents like . requirements, design,
architecture or maybe even screenshots of the error to help understand the defect
Detected By – Name/ID of the tester who raised the defect
Status – Status of the defect , more on this later
Fixed by – Name/ID of the developer who fixed it
Date Closed – Date when the defect is closed
Severity which describes the impact of the defect on the application
Priority which is related to defect fixing urgency. Severity Priority could be High/Medium/Low
based on the impact urgency at which the defect should be fixed respectively

Test Planning

• A Test Plan:
• covers all types and phases of

testing

• guides the entire testing process

• who, why, when, what

• developed as requirements,
functional specification, and
high-level design are developed

• should be done before
implementation starts

♦ A test plan includes:
⬥ test objectives
⬥ schedule and logistics
⬥ test strategies
⬥ test cases

⧫ procedure
⧫ data
⧫ expected result

⬥ procedures for handling
problems

Terminology

• Reliability: The measure of success with which the observed behavior
of a system confirms to some specification of its behavior.

• Failure: Any deviation of the observed behavior from the specified
behavior.

• Error: The system is in a state such that further processing by the
system will lead to a failure

• Fault (Bug): The mechanical or algorithmic cause of an error.

Examples of Faults and Errors
• Faults in the Interface

specification
• Mismatch between what the

client needs and what the
server offers

• Mismatch between
requirements and
implementation

• Algorithmic Faults
• Missing initialization

• Branching errors (too soon,
too late)

• Missing test for nil

• Mechanical Faults (very hard
to find)

• Documentation does not
match actual conditions or
operating procedures

• Errors
• Stress or overload errors

• Capacity or boundary errors

• Timing errors

• Throughput or performance
errors

Who Tests the Software?

developer independent tester

Understands the system

but, will test
"gently"and, is driven by
"delivery"

Must learn about the system,
but, will attempt to break
itand, is driven by quality

www.astanait.edu.kz

balzhan.azibek@astanait.edu.kz

Balzhan Azibek (Балжан Бекбайқызы)

