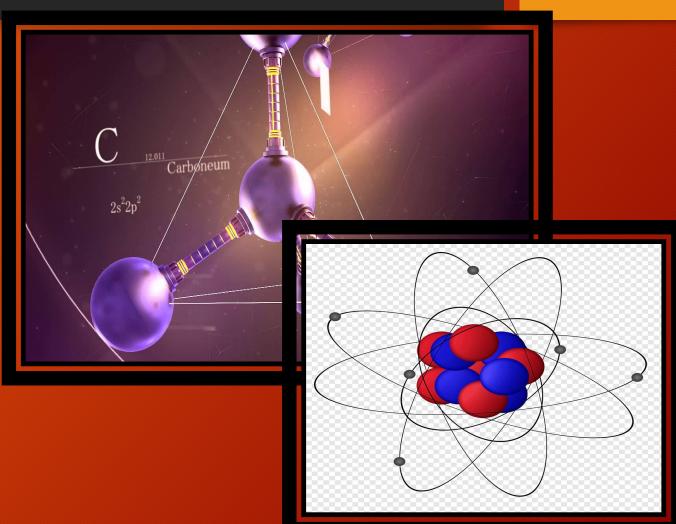
Углерод и его свойства.



Область соединений углерода так велика, что составляет особую отрасль химии, т. е. химии углеродистых, или, лучше, углеводородных, соединений.

Д. И. Менделеев, «Основы химии»

«Углерод - основа жизни...» - А. Е. Ферсман

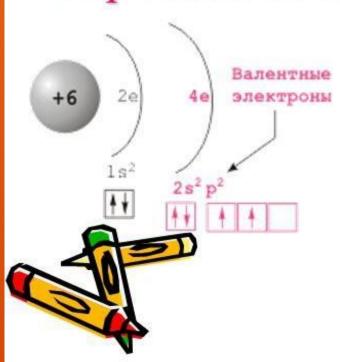
- Углерод важнейшая составная часть тканей всех растений и животных. В живых организмах его содержание 1 25% от живого веса и до 45% от сухой массы растений.
- Атомы углерода могут соединяться между собой в длинные цепи, образуя громадное число органических соединений: белки углеводы, жиры, витамины и др.

Углерод занимает 11-е место по распространенности (0,3% по массе). Он входит в состав:

- атмосферы в виде СО₂
- мела, известняка, мрамора (СаСО₃)
- магнезита (MgCO₃)
- доломита (MgCO₃ · CaCO₃)
- малахита (CuCO₃ · Cu(OH)₂)
- ископаемых углей, нефти, природного газа и т.д.

ПОЛОЖЕНИЕ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ

4 группа Главная подгруппа 2 период



Состав атома:

6 протонов, 6 электронов, 6 нейтронов.

ls 🕂

Строение атома:

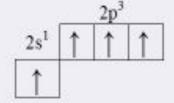
Неметалл

<u>+</u> + _ P - элемент

Расположение электронов в атоме углерода

В нормальном состоянии

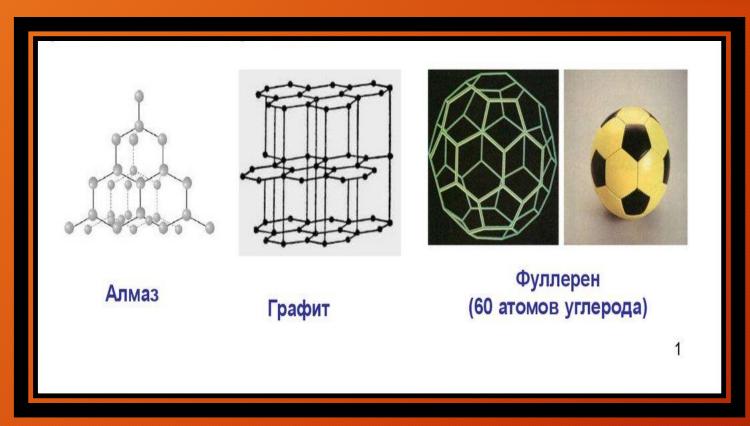
₆C

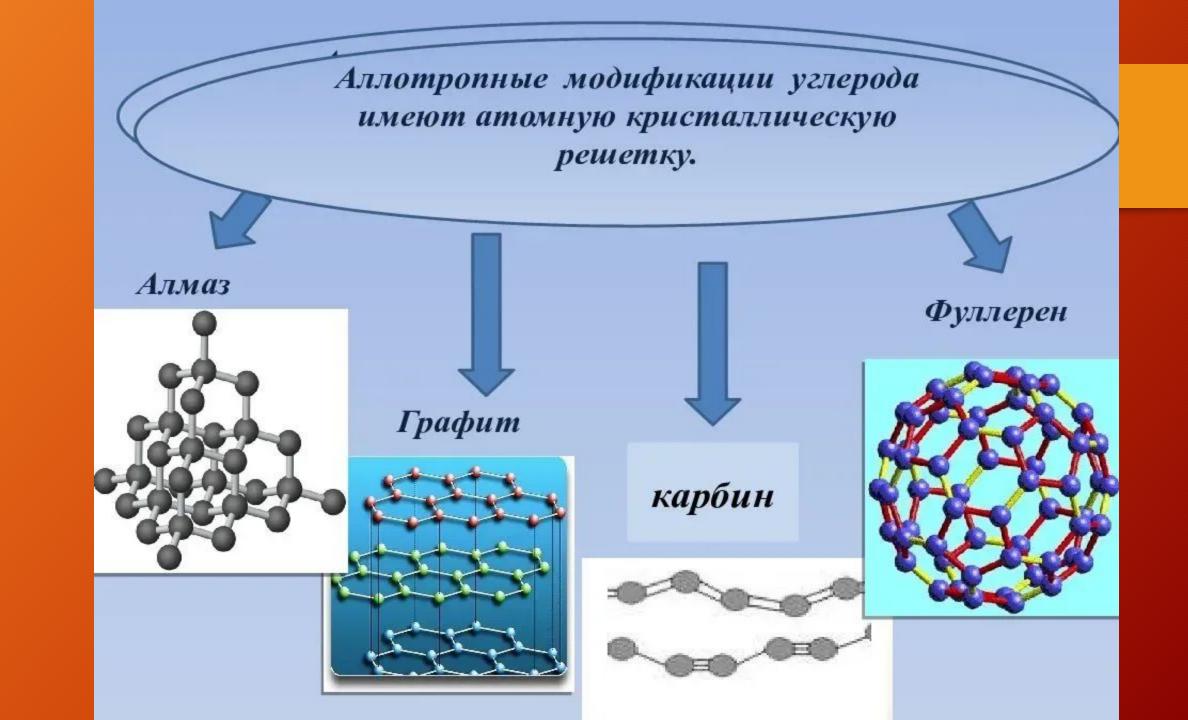

 $1s^2$

 $\begin{array}{c|c}
2p^2 \\
2s^2 & \uparrow & \uparrow \\
\hline
\uparrow \downarrow
\end{array}$

В возбужденном состоянии

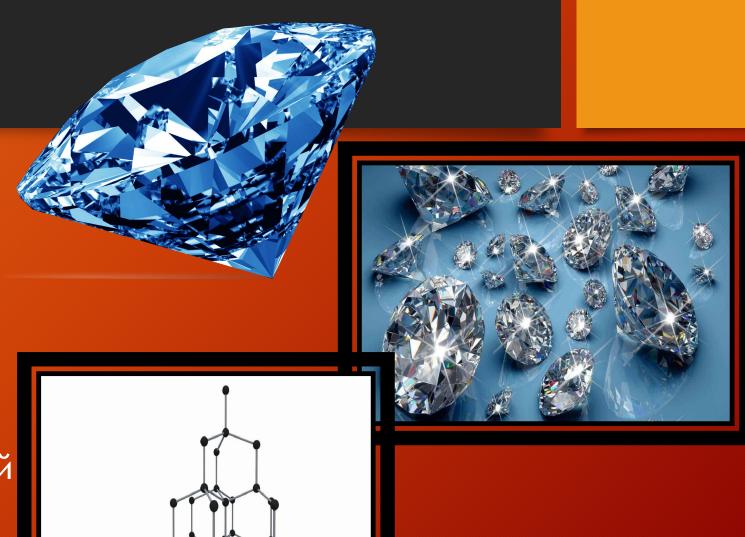
+6C *


1s²


Аллотропные модификации углерода

Аллотропия

• Аллотропия - это явление существования двух и более простых веществ одного и того же химического элемента, но различных по своему строению и соответственно свойствам. Все формы и модификации таких веществ называют аллотропными.


Алмаз – символ власти, богатства, красоты и мудрости.

АЛМАЗ — самородный минерал, кристаллический углерод. Со времени начала промышленной добычи во всём мире добыто около 200 тонн алмазов. Основную массу составляют технические камни; лишь доли процента пригодны для ювелирной

Алмаз

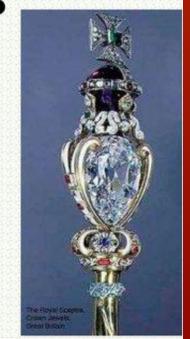
- Самое твердое вещество, найденное в природе.
- • Бесцветен, хотя встречаются и окрашенные образцы
- • Кристаллы сильно преломляют свет.
- • Не проводит электрический ток.

Плотность алмаза - 3,5 г/см3, tплав=3730С, tкип=4830оС. Алмаз можно получить из графита при р > 50 тыс. атм. и to = 1200оС.

В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико. В пространстве эти атомы располагаются в центре и углах тетраэдров, соединенных своими вершинами. Это очень симметричная и прочная решетка, определяющая многие свойства алмаза:

- плохая тепло- и электропроводимость,
- химическая инертность.
- Алмазы очень редки и ценны, их вес измеряется в каратах
- (1 карат=200мг). Ограненный алмаз называют бриллиантом

Самый большой алмаз



Алмаз «Куллинан» — самый большой природный алмаз. (Южная Африка, 1905 г., вес-3106,75 каратов (621,35 г.).

При огранке его раскололи на 9 крупных частей и порядка 100 мелких осколков.

«Куллинан I» или «Великая [®] Звезда Африки»

Алмаз

Ювелирные алмазы

«Куллинан» — крупнейший алмаз (3106 карат), был найден в Юж. Африке в 1905 г. Расколот на 105 частей.

Куллинан-I - «Большая Звезда Африки», 530 карат. Украшает скипетр англ. короля Эдуарда VII.

Кулинан-II - «Малая Звезда Африки», 317 карат, в королевской короне Англии. Куллинан-V - брошь в виде сердца (бриллиант 18,8 карат).

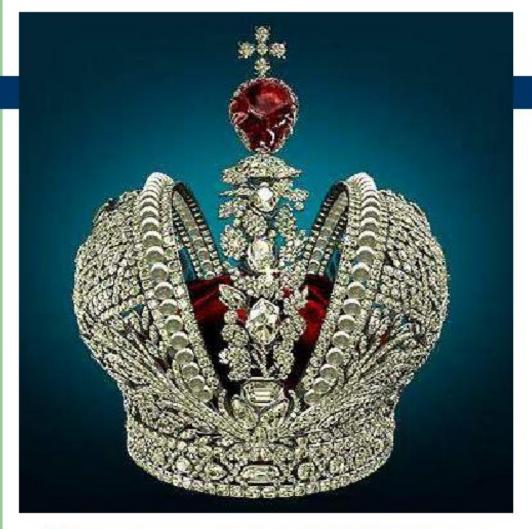
Всего получено 1063,65 карат бриллиантов.

Куллинан-І

Куллинан-II

Куллинан-V

Алмаз «Шах»



Звезда ордена Св. Андрея Первозванного

Скипетр императорский

Большая императорская корона

Малая императорская корона

Применение алмазов в быту

Алмазный стеклорез Два ребра кристалла сходятся под острым углом.

Паста алмаз ная

Llondhugu ogwazuu io

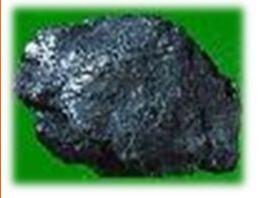
Надфили алмазные

Применение алмазов в медицине

- Алмаз состоят из углерода, и поэтому является идеальным материалом для использования теле человека, так как не вызывает в организме отторжения. Ученые в настоящий момент разрабатывают алмазные имплантаты, которые будут контролировать здоровье пациента или смогут взять на себя роль недееспособных тканей. Также ученые мечтают о крошечных машинах из алмазов, который в один прекрасный день позволят ускорить лечение и диагностику пациентов.
- Высококачественные кристаллы алмаза оказались перспективными для рентгеновской оптики.
- Ещё одно применение это радиотерапия. При лечении онкологических заболеваний необходимо определять дозу облучения, нужен датчик и алмаз может использоваться для этих целей.

Алмазный костный бор диаметр 1,4 мм.

Радиотер апия


Переносная рентгеновская установка

Графит

- Мягок, легко расслаивается на отдельные чешуйки.
- Непрозрачен, серого цвета, обладает металлическим блеском.
- Тугоплавок.
- Проводит электрический ток.

Графит имеет слоистую структуру. В кристаллической решетке графита атомы углерода, лежащие в одной плоскости, прочно связаны в правильные шестиугольники Связи между слоями малопрочны.

Графит

1778

К. В. Шееле

При сгорании - углекислый газ

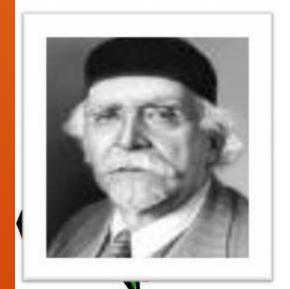
- •Темно-серый
- •Непрозрачный
- •Проводит электрический ток
- •Мягкий
- •Металлический блеск
- •Оставляет след на бумаге
- •Жирный на ощупь

Тот элемент в печной трубе Находим в виде сажи Или в простом карандаше Его встречаем даже.

И

Π

H

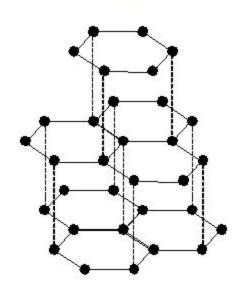

Н

Адсорбция

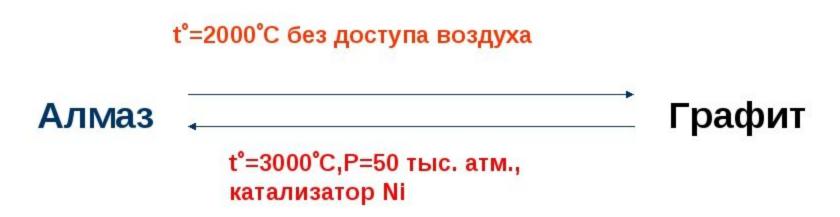
- свойство углерода удерживать на пористой поверхности растворенные вещества и газы

Н. Д. Зелинский

На основе адсорбционных свойств угля разработал фильтрующий противогаз.



- Электроды для электролиза
- Облицовка сопел ракетных двигателей
- Смазка для трущихся поверхностей, работающих при очень высоких и очень низких температурах
- Стержни для карандашей
- Замедлители нейтронов в ядерных реакторах



Сравнение физических свойств алмаза и графита

название свойства	графит	алмаз
цвет	серо-черный	Бесцветный,
		прозрачный
блеск	металлический	алмазный
плотность (г/см³)	2,27	3,52
твердость	мягче бумаги	10 по шкале твердости
хрупкость	слоистое вещество	высокая
растворимость	нет	нет
электропроводность	есть	диэлектрик
Температура плавления	4000°С (при атм. давлении)	4000°С (при 100 атм.)

Взаимопревращение алмаза и графита

Алмазы, полученные искусственным путем из графита, мелкие, невысокого качества. Их используют в основном для технических целей, а под названием фианиты — для ювелирных украшений.

Карбин

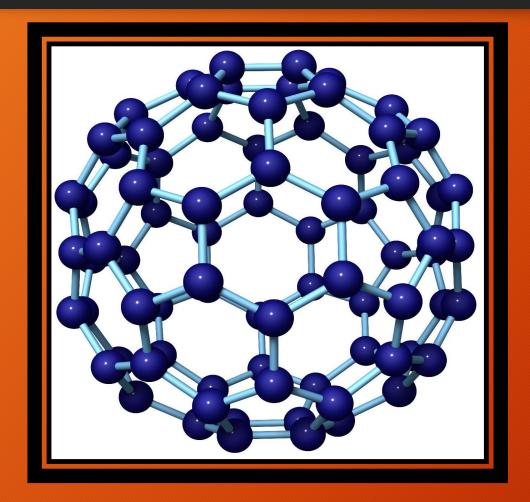
- Порошок черного цвета.
- • По твердости занимает промежуточное положение между алмазом и графитом.
- • Обладает полупроводниковыми свойствами.

Две формы линейного углерода (карбина):

$$-C \equiv C - C \equiv C - C \equiv C -$$

полииновая (α-карбин)

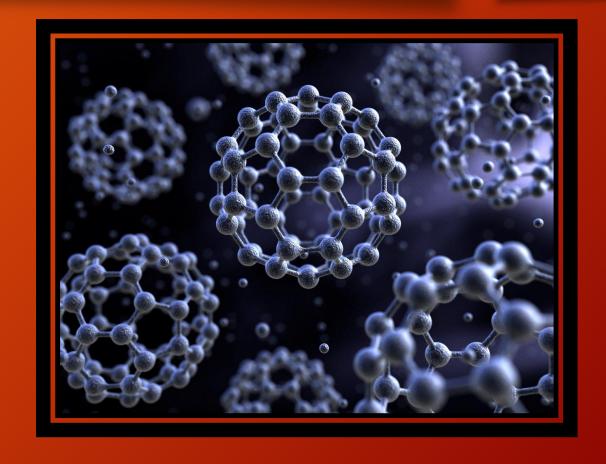
$$=C=C=C=C=C=$$


поликумуленовая (β-карбин)

Применение карбина

• Карбин уже нашел применение в электронике, космонавтике, авиации и медицине. Перспективно его применение в оптике, микроволновой и электрической технологиях, в конструкциях источников тока и прочее. Во всех этих областях ключевое значение имеет высокая стабильность материала.

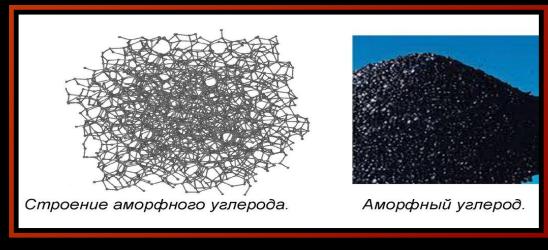
Фуллерен



Фуллерен является новой аллотропной формой углерода. Молекулы фуллерена состоят из 60,70 атомов, образующих сферу. Кристаллические фуллерены представляют собой полупроводники.

Применение фуллерена

Фуллерены используют:


- Для создания фотоприемников;
- Оптоэлектронных устройств;
- Сверхпроводящих материалов;
- В качестве красителей для копировальных машин;
- В качестве основы для создания аккумуляторных батарей.

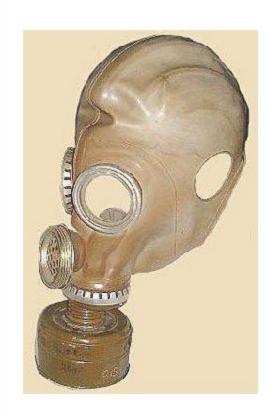
Аморфный углерод

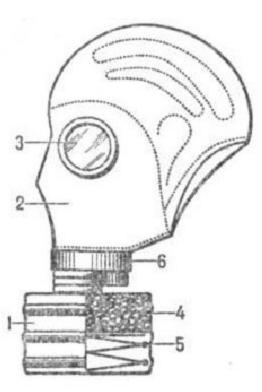
- Кокс получается при нагревании каменного угля без доступа воздуха. Применяется в металлургии в качестве восстановителя.
- Древесный уголь образуется при сухой перегонке древесины, обугливании древесины.
- Активированный уголь получают при нагревании древесного угля в струе водяного пара.
- Сажа сжигание углеводородов при ограниченном доступе воздуха.

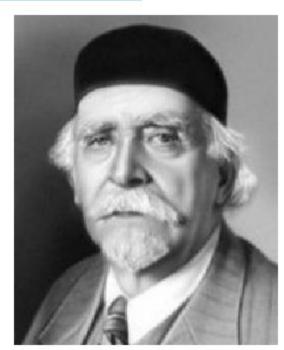
Применение аморфного углерода

- Сажа используется при изготовлении типографской краски, картриджей, косметической туши;
- Кокс используется в доменных печах при выплавке стали и чугуна;
- Древесный уголь применяется в качестве топлива;
- Активированный уголь применяется как на этапе оказания первой помощи отравившемуся человеку, так и во время последующего лечения и восстановления организма.

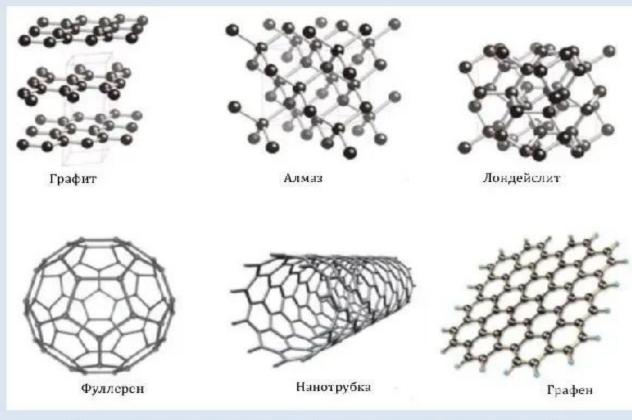
Угольные фильтры


В бытовых фильтрах, в промышленном производстве, на очистных сооружениях – уголь поглощает вредные вещества из воды





Изобретатель противогаза



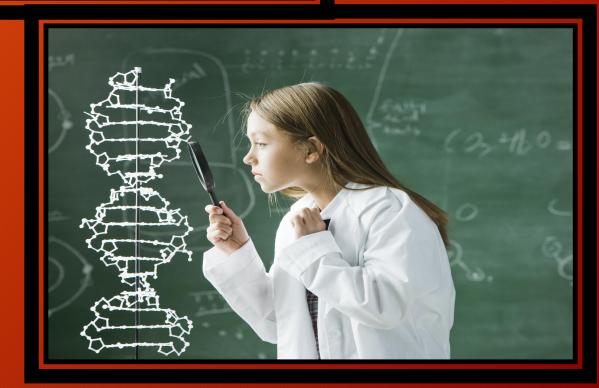
ЗЕЛИНСКИЙ Николай Дмитриевич (1861-1953)

Углерод – рекордсмен по количеству аллотропных видоизменений

- -Углеродные нанотрубки в десятки раз прочнее и в 6 раз легче стали
- -Фуллерит в полтора раза тверже алмаза
- Графен выдерживает чуть ли не в миллион раз более сильный электрический ток, чем медь

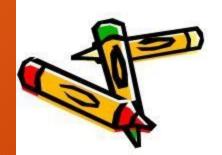
Все аллотропные видоизменения углерода обладают уникальными свойствами

Причины аллотропии углерода


- • Самый маленький атом в группе.
- • Атом с самой высокой валентностью среди элементов своего периода.
- • Большая электронная плотность на валентных орбиталях.

Вывод:

Углерод и его аллотропные модификации им еют большое практическое значение в жизни человека и промышленности.


Если аллотропные модификации у глерода (алмаз, графит) были изучены уже давно, то, например, фуллерен (1985) до конца еще не исследован, но нашел широкое применение в оптоэлектронике, микроэлектронике, в производстве полевых транзисторов и других областях советской техники.

С 12,011 Carboneum Углерод

Свойства атомов углерода

- 1. **окислительные** атомы С принимают четыре электрона, приобретают при этом степень окисления -4
- 2. **восстановительные** атомы С отдают 4 (2) электрона, приобретают при этом степень окисления +4 (+2).

Химические свойства углерода

•
$$3C + 4AI = AI_4C_3$$

$$C^{\circ} - 2\bar{e} \longrightarrow C^{+2}$$

При нагревании углерод соединяется с кислородо образуя оксид углерода (IV), или углекислый газ:

$$C + O_2 = CO_2$$

При недостатке кислорода образуется оксид углеро (II), или угарный газ:

$$2C + O_2 = 2CO$$

С водородом углерод соединяется только при высоких температурах и в присутствии катализаторов. В зависимости от температуры образуются различные углеводороды, например, метан:

$$C + 2H_2 = CH_4$$

Углерод взаимодействует при нагревании с серой и фтором, в электрической дуге с азотом:

$$C + 2S = CS_2$$

 $C + 2F_2 = CF_4$
 $2C + N_2 = (CN)_2$

Углерод — сильный восстановитель. При нагревании с водяным паром он вытесняет из воды водород:

$$H_2O + C = CO + H_2$$

При нагревании углерода с оксидом углерода (IV) образуется угарный газ:

$$C + CO_2 = 2CO$$

Углерод восстанавливает многие металлы из их оксидов:

$$2Fe_2O_3 + 3C = 4Fe + 3CO_2$$

С металлами или их оксидами углерод образует карбиды:

$$CaO + 3C = CaC_2 + CO$$

Спасибо за внимание!!!