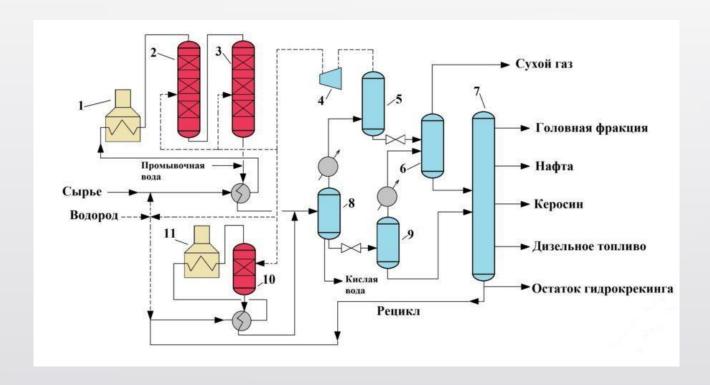

Титульный лист

Актуальность исследования

Гидрокрекинг — это процесс, осуществляемый с целью переработки высококипящих нефтяных фракций для получения моторных топлив.
 Развитию процессов гидрокрекинга способствует все возрастающая добыча сернистых и высокосернистых нефтей, т.к. данному процессу сопутствует процесс
 гидроочистки.



Условия процесса гидрокрекинга

Температура процесса – 330-450°C Давление 30-200 атмосфер Расход водорода 1-3%

Типы установок гидрокрекинга

- Одностадийный
- Одноступенчатый с рециркуляцией
- Двух стадийный

Цель и задачи исследования.

Цель работы:

 Расчёт запаса мощности теплообменного оборудования реакционного блока установки гидрокрекинга при увеличении мощности на 422 тысячи тонн в год.

Задачи:

- Расчёт уже имеющегося теплообменника
- Подбор подходящего теплообменника

Выбор установки и теплообменника

Установка

Сырье	Основное (100% тяж. вакуумный				
Сырье	газойль)				
Мощность установки,	2.1				
тыс. тонн/год	2,1				
Температура,°С	290-455				
Давление, МПа	9-13				
Конверсия сырья, %	65				
	Окислы никеля (кобальта) и				
Катализаторы	молибдена нанесённые на окись				
	алюминия				

Теплообменник

Тип	Кожухотрубчатый					
Диаметра кожуха, D _{кож} , мм	1000					
Длина теплообменной части труб, L _{тр} ,	6000					
MM Avguern mys. d	25					
Диаметр труб, d _{тр} , мм	25					
Количество труб, N _{тр} , шт	292					
Поверхность теплообмена, F, m^2	13753,2					
Межтрубное пространство						
Входящая температура теплоносителя Т,°С	454					
Трубное пространство						
Входящая температура сырья Т,°С	427					

Материальный баланс

		Приход			Расход				
Nº	Наименование сырья/продукции	тыс.т/ год	кг/час	%масс.	тыс.т/	кг/час	% масс.		
	Сырье:								
1.	Тяжелый вакуумный газойль	2056,92	244872	97,5	-	-	-		
2.	Подпиточный водород	52,51	6251	2,5	-	-	-		
	Продукция:								
1.	Дизельное топливо	-	-	-	615,54	73288	29,2		
2.	Непревращенный остаток	-	-	-	663,37	78972,5	31,4		
3.	Керосин	-	-	-	381,61	45430	18,1		
4.	У/в газ (топливный)	-	-	-	70,35	8375	3,3		
5.	Тяжелая нафта	-	-	-	184,49	21962,5	8,7		
6.	Легкая нафта	-	-	-	115,68	13771,5	5,5		
7.	СУГ	-	-	-	21,23	2511	1,0		
8.	Потери	-	-	-	57,17	6806,5	2,7		
	Итого:	2109,43	251123	100	2109,43	251123	100		

$$G_i = \frac{G * w_i}{100\%}$$

Тепловая нагрузка с заданным потоком

$$Q_1 = G_1 * c_1 * (t_{1K} - t_{1H}) = 3321106 \, \text{Дж/c}$$

Тепловая нагрузка после повышения потока на 20%

$$Q_1 = G_1 * c_1 * (t_{1\kappa} - t_{1H}) = 3985327$$
 Дж/с

Расчёт теплообменника

- Поверхность теплообмена заданного теплообменника:
- $F = \pi * d_{Tp} * L_{Tp} * N_{Tp} = 137,532 \text{ M}^2$
- Гидравлическое сопротивление:

•
$$\Delta P_{\rm Tp} = \left[\lambda \frac{n l_{\rm Tp}}{d_{\rm BH}} + \sum \zeta_{\rm Tp}\right] \frac{\rho W_{\rm Tp}^2}{2} + \sum \zeta_{\rm IIIT} \frac{\rho W_{\rm IIIT}^2}{2} = 2040$$

•
$$\Delta P_{\text{MT}} = [2(1+k)Eu + \sum \zeta_{\text{MT}}] \frac{\rho W_{\text{MT}}^2}{2} + \sum \zeta_{\text{ШT}} \frac{\rho W_{\text{ШT}}^2}{2}$$

= 22354 $\Pi \alpha$

- Требуемая поверхность теплообмена
- $F = \frac{Q_1}{K * t_{cp}} = 152 \text{ M}^2$

Для нахождения поверхности теплообмена нам необходим коэффициент теплопередачи $K = \frac{1}{\frac{1}{\alpha_r} + \frac{\delta_{CT}}{V_{CT}} + \frac{1}{\alpha_r}}$

Для этого необходим коэффициент теплоотдачи, который считается по значениям Нуссельта, Рейнольдса и Прандтля.

$$Nu = \frac{\alpha d}{\lambda}$$

Для определения Нуссельта необходимо посчитать Рейнольдса и Прандтля

$$Re_{\text{Tp}} = \frac{W_{\text{Tp}}d_{\text{BH}}p_{\text{Tp}}}{\mu_{\text{Tp}}} = 118459$$

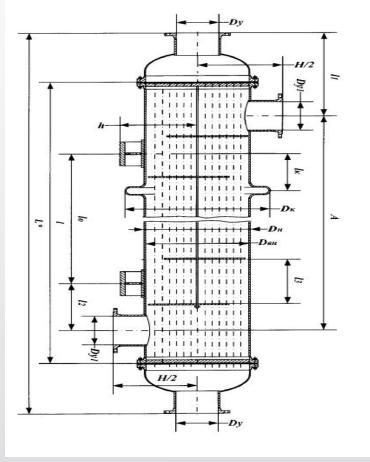
 $Pr = \frac{c\mu}{\lambda} = 365$

Учитывая, что значение Рейнольдса больше 10000, то для расчёта Нуссельта воспользуемся формулой:

Nu=0,021 *
$$\varepsilon_l Re^{0.8} Pr^{0.43} (\frac{Pr}{Pr_{cr}})^{0.25} = 261,76$$

Отсюда найдём коэффициент теплоотдачи:

$$\alpha = \frac{Nu*\lambda}{d} = 1776 \text{ BT/(M}^2\text{K)}$$


Исходя из этого, значение коэффициента теплопередачи будет равно: $K=855~\mathrm{Br/m^2K}$

D _{KOЖ} , MM	Число	L _{Tp′}	d _{tp′}	_	MI		Расстояние между
KOK	труб	M	M	M ²	M ²	пучке	перегородками
1000	747	3	0,02 5	0,259	0,143	29	520

Для проверки гидравлического сопротивления высчитывали скорость потоков в трубном, межтрубном пространстве и на штуцерах по формуле

$$W = \frac{G}{pS}$$

Значения соответственно были равны: 0,6; 0,9; 0,105, 0,12 м/с

Заключение

- На основании проведённых расчётов можно сделать следующие в выводы:
- Произведён расчёт увеличения мощности установки гидрокрекинга, установлено, что невозможно увеличение мощности работающей установки на 20% (до 2531,3 тыс. тонн в год) без замены теплообменника 039-Т-002.
- Гидравлическое сопротивление межтрубного пространства равно 22354 Па, трубного пространства равно 2078 Па, что больше максимально допустимого на 24% и 21% соответственно.
- Расчётная площадь поверхности теплопередачи необходимое для нагрева до нужной температуры равна 152 м², что больше поверхности, которую имеет теплообменник на 11%.

Спасибо за внимание