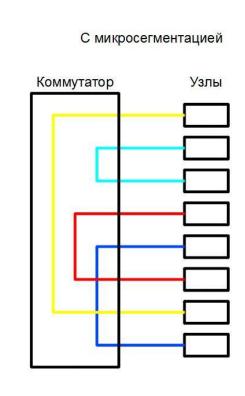

Компьютерные сети

ЛЕКЦИЯ 3

Содержание:

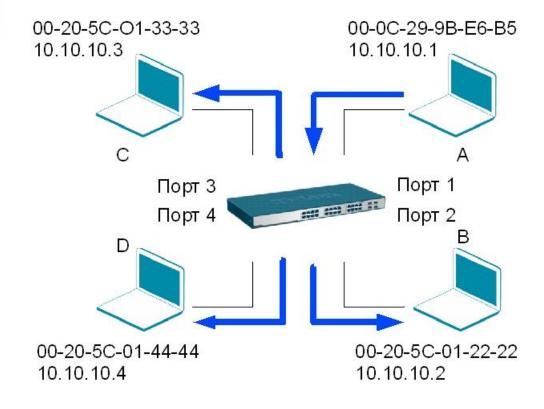
- Технологии и устройства канального уровня
- Технологии беспроводных сетей
- Сетевой уровень модели OSI

Технологии и устройства канального уровня



- Функционирование коммутаторов локальной сети
- Конструктивное исполнение коммутаторов
- Технологии коммутации и модель OSI
- Протоколы Spanning Tree
- Виртуальные локальные сети (VLAN)
- Технология РоЕ

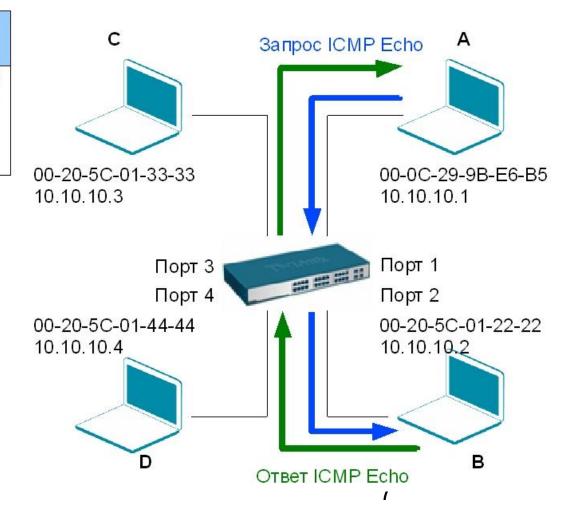
Функционирование коммутаторов локальной сети

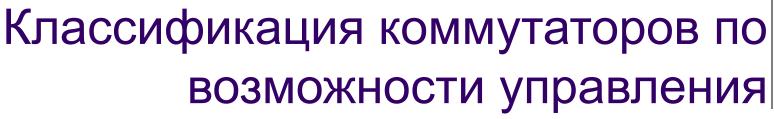

Функционирование коммутаторов локальной сети

6 байт	6 байт	2 байта		4 байта
Адрес назначения	Адрес источника	Тип	ARP	FCS
FF-FF-FF-FF	00-0C-29-9B-E6-B5	Ethernet	AINE	100

Таблица коммутации

Порт 1 00-0С-29-9В-Е6-В5




Функционирование коммутаторов локальной сети

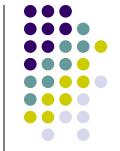


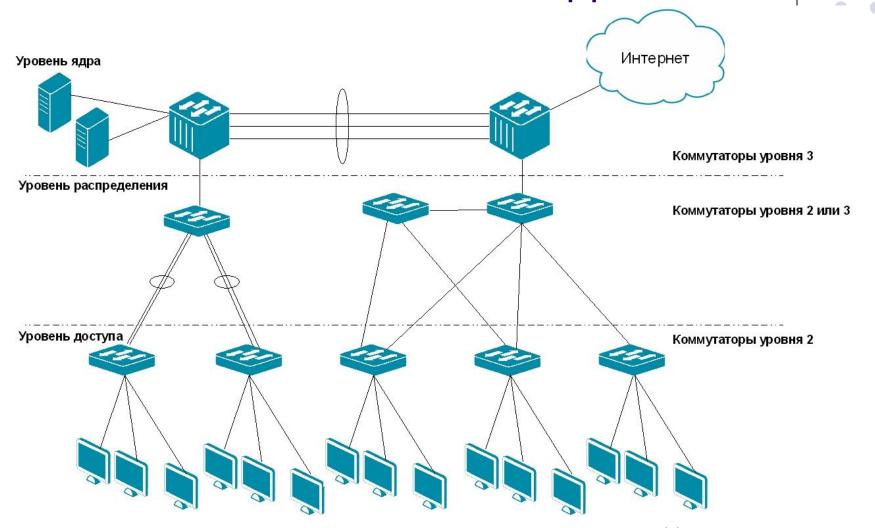
Таблица коммутации

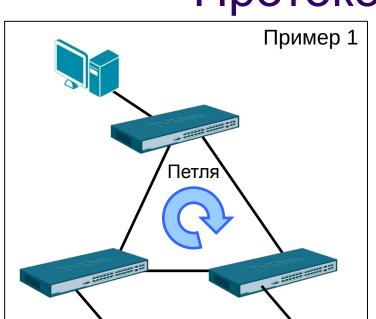

Порт 1 00-0С-29-9В-Е6-В5 Порт 2 00-20-5С-01-22-22

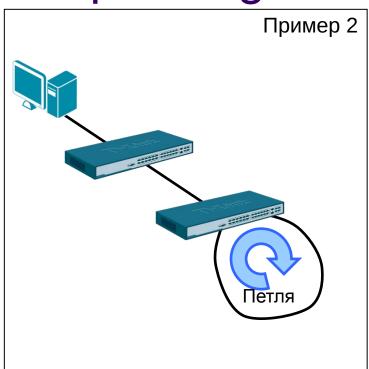
- Неуправляемые коммутаторы
- Управляемые коммутаторы
- Настраиваемые коммутаторы

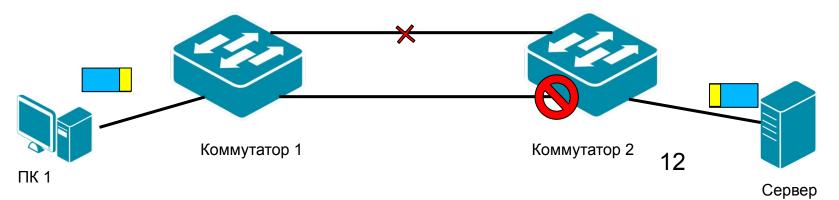
- **Коммутаторы уровня 2** (Layer 2 (L2) switch)
- Коммутатор уровня 3 (Layer 3 (L3) switch)

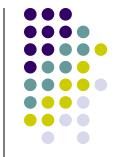
Конструктивное исполнение коммутаторов

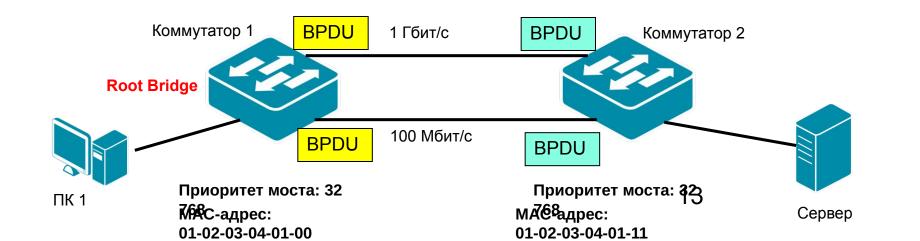

- настольные коммутаторы (Desktop switch);
- **автономные коммутаторы** (Rack mounted switch);
- коммутаторы на основе шасси (Chassis switch).
- стековые

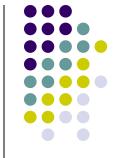




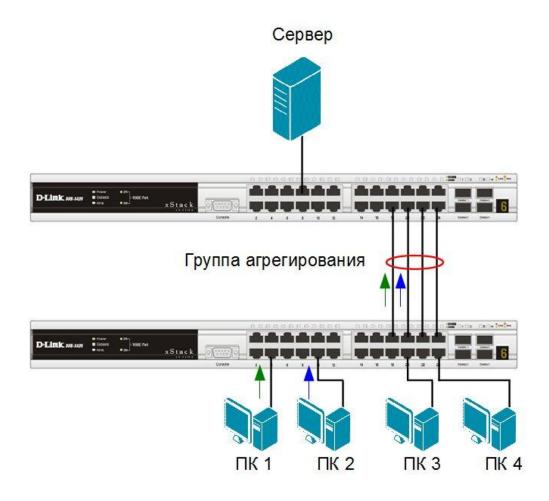

Трехуровневая иерархическая модель сети

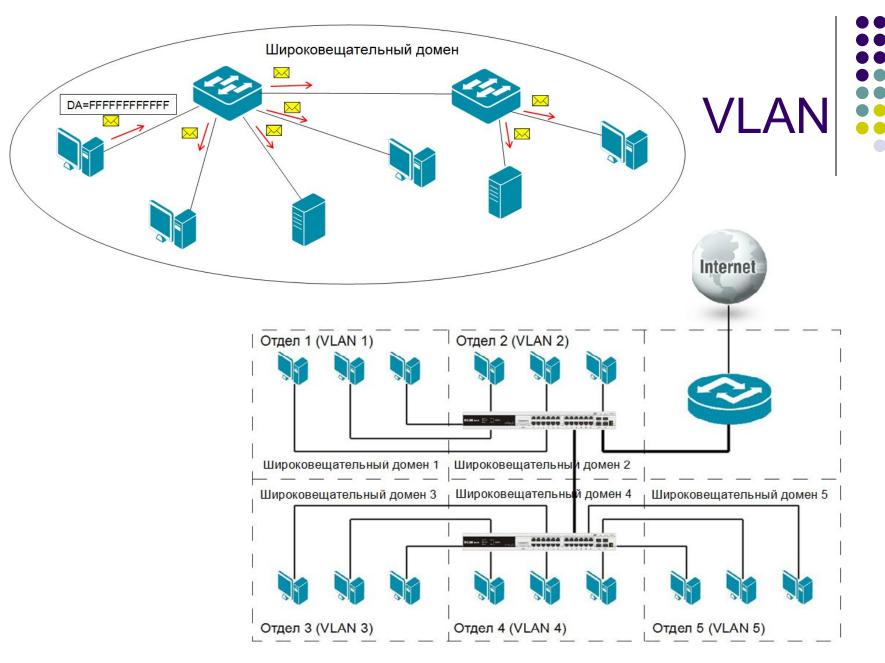

Протоколы Spanning Tree





Протокол IEEE 802.1D Spanning Tree Protocol (STP)



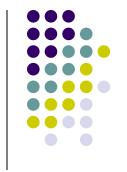


Агрегирование каналов связи

- на основе портов;
- на основе стандарта IEEE 802.1Q;
- на основе стандарта IEEE 802.1ad (Q-in-Q VLAN);
- на основе портов и протоколов IEEE 802.1v;
- на основе МАС-адресов;
- асимметричные.

Питающее устройство (Power Sourcing Equipment, PSE)

Коммутатор


Питаемое устройство (Powered Device, PD)

Технология РоЕ

Технологии беспроводных сетей

- Что такое Wi-Fi
- Основные элементы беспроводной сети
- Стандарты IEEE 802.11
- Безопасность беспроводных сетей

Технологии беспроводных сетей

- Wi-Fi (Wireless Fidelity)
- Wireless Local Area Network (WLAN)
- Wi-Fi Alliance (группа стандартов 802.11).

Основные элементы беспроводной сети

Беспроводной USBадаптер

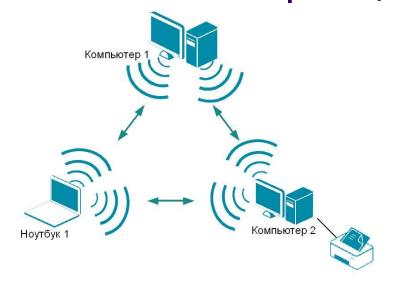
Беспроводной CardBus адаптер

Точка доступа

Внешняя антенна

Стандарты беспроводных сетей

	802.11b	802.11a	802.11g	802.11n	802.11ac	802.11ax
Принят	1999	1999	2003	2009	2014	2019
Полоса частот (МГц)	2400 – 2483,5	5150 – 5350, 5625 – 5825	2400 – 2483,5	2400 – 2483,5 5150 – 5350 5650 – 5825	5ГГц	2,4ГГц 5ГГц
Ширина канала	22 МГц	20 МГц	20 МГц	20 и 40 МГц	до 80 МГц	20/40/80/160 МГц
Количество непересекающи хся каналов	3	12	3	3/12 (20 МГц) 1/≈4 (40 МГц)	до 8	23 канала по 20 МГц (5ГГц)
Скорость передачи	до 11 Мбит/с	до 54 Мбит/с	до 54 Мбит/с	до 600 Мбит/с	до 7 Гбит/с	до 11 Гбит/с

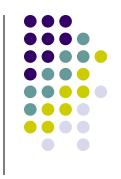

Технологии, применяемые в оборудовании Wi-Fi

- SU MIMO
- MU MIMO
- Beamforming

Режимы функционирования беспроводных сетей

Ad Hoc

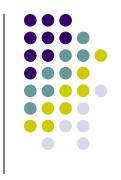
Infrastructure


Беспроводная сеть

- Контроль за подключением к точке доступа на основе МАС-адресов.
- Скрытие имени сети SSID.
- Шифрование на основе протокола WEP (RC4).
- Контроль за доступом к среде передачи на основе протокола 802.1X.
- Поддержка протоколов WPA/WPA2.

Сетевой уровень модели OSI

- Протоколы сетевого уровня. Протокол IP
- Адресация IPv4
- Технология NAT (Network Address Translation)
- Адресация IPv6

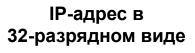


Модель OSI	Модель ТСР/ІР						
Уровень приложений			FTP	Ĩ			
Уровень представлений	Уровень приложений	Telnet		SMTP	P TFTP	•	SNMP
Сеансовый уровень							
Транспортный уровень	Транспортный уровень		ТСР			UDI	P
Сетевой уровень	Уровень Интернет	AB		IPv4	/v6	IGM	ICM
Канальный уровень	Уровень доступа к	P	Fran	ime _		A# 5:	A T11
Физический уровень	сети	Etherne	t Re	elay	PP	Wi-Fi	АТМ

Формат пакета (дейтаграммы) IPv4

Версия (4 бита)	Длина заголовка (4 бита)	Тип сервиса (8 бит)		Общая дли	на (16 бит)
Идентификатор пакета (16 бит)		Флаги (3 бита)	Смещение	е фрагмента (13 бит)	
Время жи:	Время жизни (8 бит) Протокол (8 бит)			Контрольная сумма (16 бит)	
IP-адрес источника (32 бита)					
	IP-адрес назначения (32 бита)				
Опции Выравнивание					
Данные					

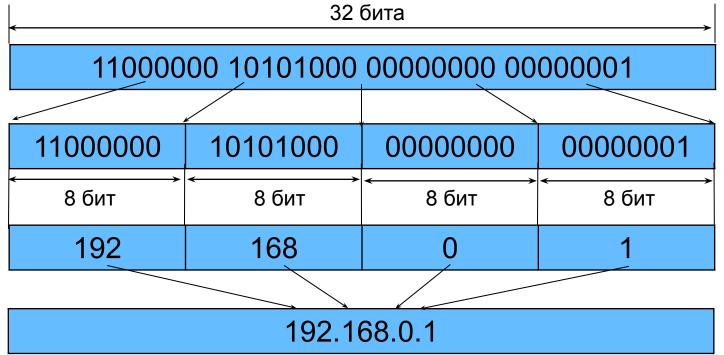
Адресация сетевого уровня



Функции ІР-адреса:

- Идентификация сетевых интерфейсов.
- Маршрутизация.

Представление адреса IPv4

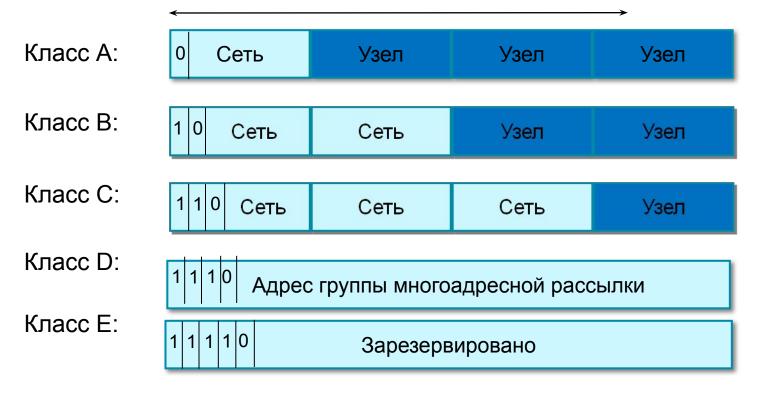


IP-адрес, разбитый на октеты

Октеты в десятичной записи

IP-адрес в точечнодесятичной записи

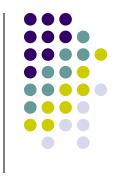
Преобразование октета IP-адреса из двоичного представления в десятичное



Двоичное значение октета	Значения битов октета	Десятичное значение октета
00000000	0	0
10000000	128	128
11000000	128+64	192
11100000	128+64+32	224
11110000	128+64+32+16	240
11111000	128+64+32+16+8	248
11111100	128+64+32+16+8+4	252
11111110	128+64+32+16+8+4+2	254
11111111	128+64+32+16+8+4+2	255
	+1	31

Классовая ІР-адресация

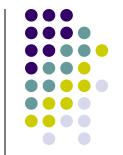
32 бита



Классы ІР-адресов

Класс	Наименьший адрес сети	Наибольший адрес сети	Максимальное число узлов в сети
A	1.0.0.0 (0 — не используется)	126.0.0.0 (127 — зарезервирован)	224-2, поле 3 байта
В	128.0.0.0	191.255.0.0	216-2, поле 2 байта
C	192.0.0.0	223.255.255.0	28-2, поле 1 байт
D	224.0.0.0	239.255.255.255	Класс используется для групповой рассылки
Е	240.0.0.0	247.255.255.255	Класс зарезервирован для экспериментального использования

Маска подсети

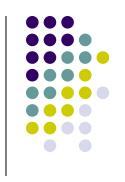


- A IP адрес, а Mask маска, то
- Адрес сети = A and Mask
- Адрес узла = A and (Not Mask)

IP-адрес: 192.168.130.5 или 11000000 10101000 10000010 000001012 маска: 255.255.255.0 или 11111111 11111111 1111111 000000002 адрес подсети: 192.168.130.0 или 11000000 10101000 10000010 000000000 адрес узла: 0.0.0.5 или 00000000 00000000 00000000 000001012

IP-адрес: 192.168.130.5 или 11000000 10101000 10000010 000001012 Маска: 255.255.128.0 или 11111111 1111111 10000000 000000002 адрес подсети: 192.168.128.0 или 11000000 10101000 10000000 000000002 адрес узла: 0.0.2.5 или 00000000 00000000 00000010 000001012

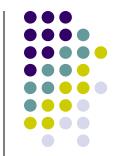
Бесклассовая междоменная маршрутизация (CIDR, Classless Interdomain Routing)

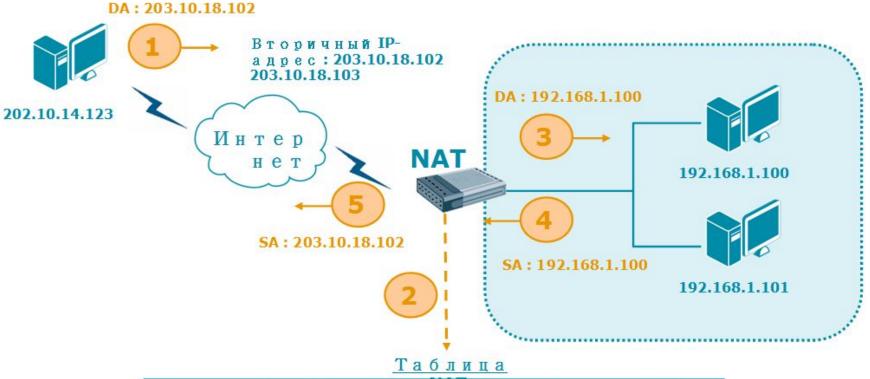

- IP-адрес 192.168.130.5
 с маской 255.255.255.0
 имеет вид 192.168.130.5/24,
- IP-адрес 192.168.130.5
 с маской 255.255.128.0
 обозначается как 192.168.130.5/17

Специальные ІР-адреса

Идентифик атор сети	Идентифик атор узла	Описание
Bce «0»	Bce «0»	(0.0.0.0) — адрес узла, сгенерировавшего пакет. Используется
		устройством для ссылки на самого себя, если оно не знает свой
		IP-адрес. Часто используется, когда устройство пытается
		получить IP-адрес с помощью протокола DHCP.
Bce «0»	Идентифика	Узел назначения принадлежит той же сети, что и узел-
	тор узла	отправитель.
Идентифик Все «0»		Ндррамерсе 0 и 0.0.25
атор сети		Например, 175.11.0.0
Идентифик	Bce "1"	Ограниченный широковещательный адрес (в пределах данной
атор сети		ІР-сети). Например, 192.168.100.255
Bce «1» Bce «1»		255.255.255.255 – «глобальный» широковещательный адрес.
127 () () 1		Адрес интерфейса обратной петли (loopback), предназначен для
		тестирования оборудования без реального отправления пакета.

ІР-адреса


- Публичные (public) IP-адреса
- Частный (private) IP-адрес


Класс А От 10.0.0.0 до 10.255.255.255

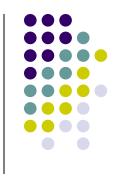
Класс В ОТ 172.16.0.0 до 172.31.255.255

Класс С От 192.168.0.0 до 192.168.255.255

Преобразование сетевых адресов – Network Address Translation (NAT)

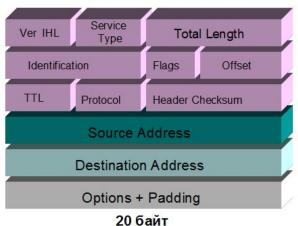
Частный IP-	Публичный IP-
192.168.1.100	203.10.18.102 203.10.18.103

Способы конфигурации IPадресов

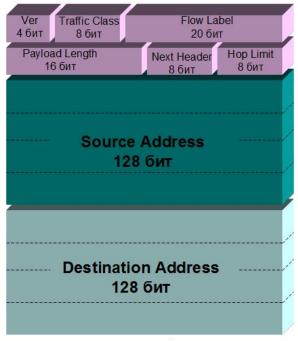

• Статическая конфигурация:

• Динамическая конфигурация:

Протокол IPv6


- Большее адресное пространство.
- Улучшенные механизмы по автоматической настройке узлов
- Расширенные возможности для поддержки аутентификации пользователей, целостности и конфиденциальности данных.
- Упрощение маршрутизации.
- Улучшенные механизмы обеспечения качества обслуживания (Quality of Service, QoS).
- Упрощенный заголовок пакета.

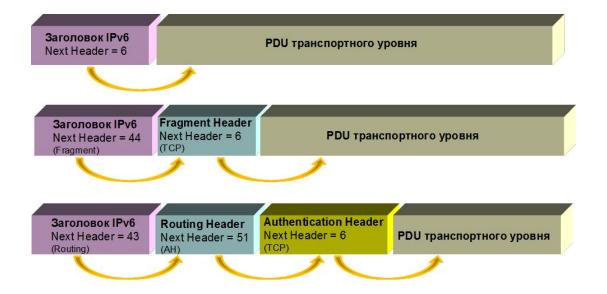
Формат пакета IPv6



Версия (4 бита)	Класс трафика (8 бит)		Метка потока (20 бит)		
Размер поля данных (16 бит)		Следующий заголовок (8 бит)	Предельное число шагов (8 бит)		
Адрес источника (128 бит)					
Адрес назначения (128 бит)					

Заголовок IPv4 пакета

Заголовок IPv6 пакета



40 байт

Расширенный заголовок IPv6

Расширенный заголовок	Тип	Описание
Hop-by-Hop Options	0	Параметры которые должны быть обработаны каждым транзитным узлом.
Routing	43	Позволяет отправителю определять список узлов, которые пакет должен пройти.
Fragment	44	Заголовок содержит информацию по фрагментации пакета.
Authentication Header (AH)	51	Содержит информацию используемую для аутентификацию большей части пакета

