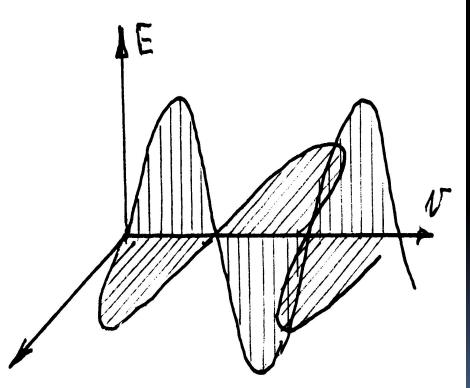
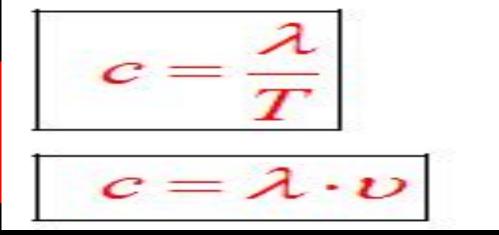
ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Джеймс Клерк Максвелл (1831-1879), английский физик, создатель классической электродинамики, один из основоположников статической физики, организатор и первый директор (с 1871) Кавендишской лаборатории. Развивая идеи М. Фарадея, создал теорию электромагнитного поля (уравнения Максвелла) ввёл понятия о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света.

 В России одним из первых занялся изучением электромагнитных волн преподаватель офицерских курсов в Кронштадте Александр Степанович Попов. ■ Электромагнитная волна представляет собой систему порождающих друг друга и распространяющихся в пространстве переменных электрического и магнитного полей.


 Количественной характеристикой магнитного поля является вектор магнитной индукции В

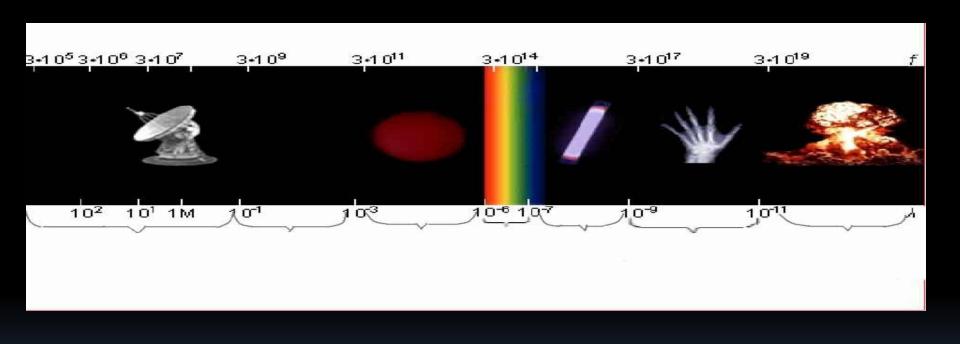
 Основной количественной характеристикой электрического поля служит векторная величина, называемая напряжённостью электрического поля, которая обозначается É


Свойства электромагнитных

ВОЛНоглощение

- Отражение
- Преломление
- Интерференция
- Поперечность электромагнитных волн
- В вакууме распространяются со скоростью света
- Создаются зарядом, двигающимся с ускорением

Формула скорости электромагнитной волны



мI – длина электромагнитной волны.

 $\Gamma[I]$ — частота электромагнитной волны.

 $c = 30^{-8}$ м/с — скорость электромагнитной волны в вакууме.

Шкала электромагнитных волн

Радиоволны

<u>Инфрак</u> <u>расное</u> <u>излучен</u> <u>ие</u>

Видимый Свет <u>Ультрафиол</u> <u>етовое</u> излучение

Рентгенов ское излучение <u>Гамма -</u> <u>излучение</u>

Оцени свою работу на

Мои умения и навыки

- 1. Я умею объяснять процесс образования электромагнитной волны.
- 2. Я знаю и понимаю основные свойства ЭМВ

3. Я могу перечислить основные электромагнитные излучения, знаю их сходство и различие.

$$\nu = 2 \cdot 10^4 - 10^9 \, \Gamma$$
ц. $\lambda = 0.3 - 1.5 \cdot 10^4 \, \mathrm{m}$.

Радиоволны **открыты** в 1886 году **Г. Герцем. Источник** – переменный ток.

ν, Гц

 10^{6}

107

Средние волны

 $\lambda = 10^2 - 10^3 \,\mathrm{M}$

Короткие волны

 $\lambda = 10 - 10^2 \,\mathrm{M}$

УКВ метрового - 10⁸ диапазона

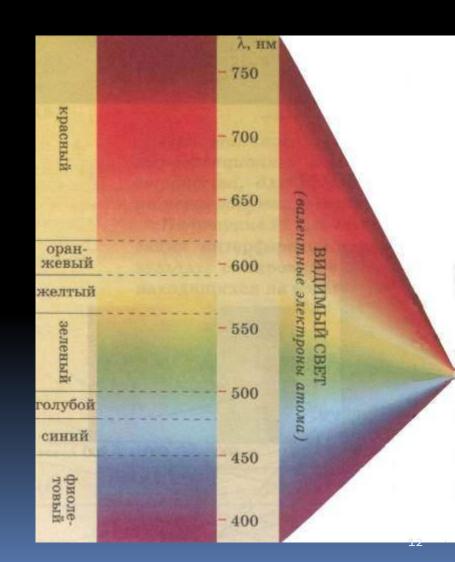
УКВ дециметрового диапазона РАДИО-ДИАПАЗОВ

Инфракрасное излучение

$$v = 3 \cdot 10^{11} \, \Gamma \text{ц} - 3,85 \cdot 10^{14} \, \Gamma \text{ц}.$$

 $780 - 1 \, \text{мм}.$

Инфракрасное излучение было открыто в 1800 г. английским астрономом Уильямом Гершелем. Источник — колебание и вращение молекул вещества.



Солнце

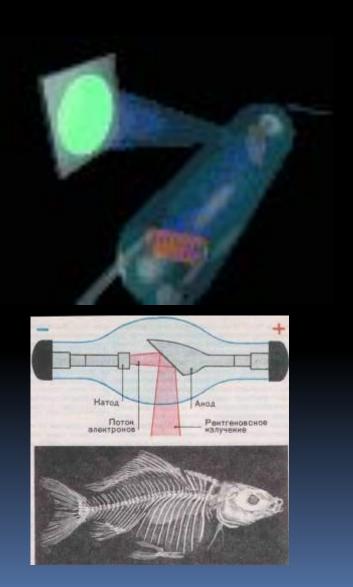
Видимый свет

$$v = 3, 85 \cdot 10^{14} \, \Gamma$$
ц. $\lambda = 380 - 780 \, \text{нм}.$

Источник оптического излучения (видимого света) являются валентные электроны, изменяющие свое положение в пространстве, также движущиеся с ускорением свободные электроны.

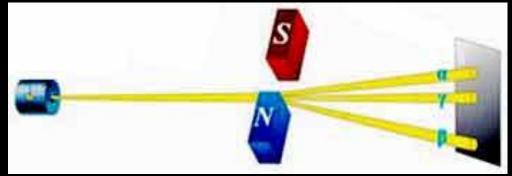
Ультрафиолетовое излучение

$$v = 8 \cdot 10^{14} - 3 \cdot 10^{16}$$
 Гц. $\lambda = 10 - 380$ нм.


Открыто в 1801 году Иоганном Риттером. Источник — валентные электроны атомов и молекул, а также ускоренно движущиеся свободные заряды.

Рентгеновское излучение

$$v = 3 \cdot 10^{16} - 3 \cdot 10^{20}$$
 Гц. $\lambda = 10^{-12} - 10^{-8}$ м.


Открыто в 1895 году В. Рентгеном.

Источник - изменение состояния электронов внутренних оболочек атомов или молекул, а также ускоренно движущиеся свободные электроны.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

$$\nu > 8 \cdot 10^{20} \, \Gamma$$
ц. $\lambda < 10^{-12} \, \mathrm{M}$.

Открыто в 1990 году Полем Вилларом. Источник — изменение энергетического состояния атомного ядра, а также ускоренное движение свободных заряженных частиц.

Схематическое изображение прозрачности земной атмосферы для всего диапазона электромагнитных излучений

	Электромагнит- ное излучение Название диапазона	Длина волны (см)	Частота (Гц)
	Гамма лучи	Короткие	Высокие частоты
		10-9	3 · 1019
	Рентгеновские лучи	1 ангстрем 10 ⁻⁶	3 - 1016
	Ультрафиолето- вое излучение	3 3 10 ⁻⁵	1015
	Видимый свет		
Радиоволны	Инфракрасное излучение	10-4	
		10-1	3 · 1011
	Микроволновое излучение	1	3 · 1011
	Излучение для связи с	1	
	аппаратами аппаратами	102	3 · 108
	Телевидение	103	3 · 107
	Коротковолновое излучение	104	3 - 106
	Длинноволновое излучение	105	3 · 105
		1 км Длинные	300 кГц Низкие частоты

Решение задачи

Дано:

MTV6

$$C=3 \cdot 10^8 \,\mathrm{m/c}$$

ν-? (Гц)

$$T-?(c)$$

Решение:

$$\begin{vmatrix} C_{\rm M} \\ 6 \cdot 10^{-3} {\rm M} \end{vmatrix} \quad c = \lambda \cdot v$$

$$c = y \cdot v$$

$$v = \frac{C}{\lambda}$$

$$\mathbf{v} = \frac{3 \cdot 10^8}{6 \cdot 10^{-3}} = 0.5 \cdot 10^{11} = \underline{5 \cdot 10}^{10} \ (\Gamma \mathrm{H}).$$

$$T = \frac{1}{v}$$

T =
$$\frac{1}{5 \cdot 10^{10}}$$
 = 0,2 \cdot 10^{-10} = $\frac{2 \cdot 10^{-11}}{(c)}$.

Ответ: $0.5 \cdot 10^{10} \, \Gamma$ ц, $2 \cdot 10^{-11} \, c$.

Заключение

- 1. Исследования электромагнитного излучения имеют огромное значение для уточнения наших представлений о строении вещества. Исследования инфракрасного, видимого и ультрафиолетового излучений помогли выяснить строение молекул и внешних электронных оболочек атомов; изучение рентгеновского излучения позволило установить строение внутренних электронных оболочек атомов и структуру кристаллов, а излучение гамма лучей дает много ценных сведений о строении атомных ядер.
 - 2. Анализ информации, полученной во всем спектре электромагнитных волн, позволяет составить более полную картину структуры объектов во Вселенной, тем самым расширить границы познания природы.

Литература

1. А.В. Перышкин, Е.М. Гутник «Физика. 9 класс», «Дрофа», 2009 г.