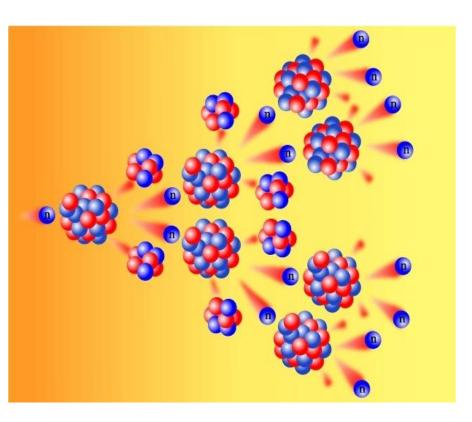

Кафедра общей и медицинской химии

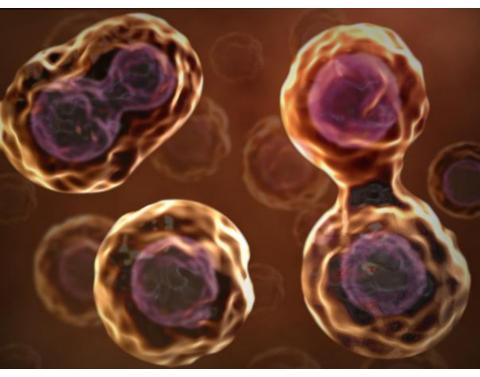
<u>Лекция №1</u>

Ароматические и гетероциклические соединения. Электронная спектроскопия

I. Классификация органических реакций

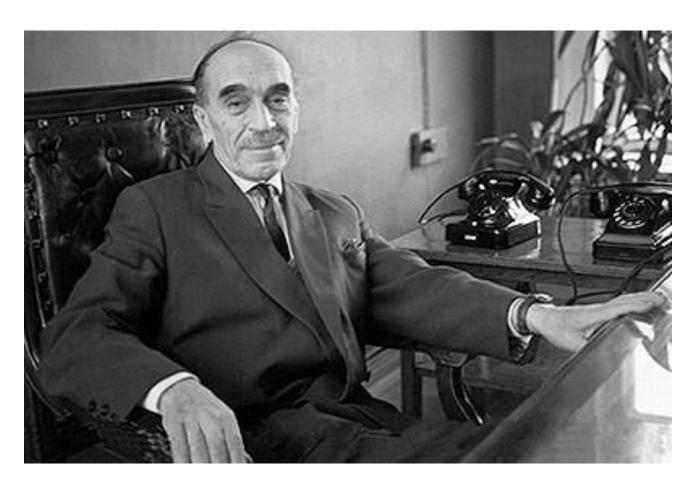
1) по механизму разрыва связей


а) Радикальные реакции:


гомолитический разрыв связи:

А· + В· - свободные радикалы (R) - очень активные частицы, стремятся к образованию связей

H-, CI-, O:, ·OH


Условия: газовая фаза, свет, неполярный растворитель

Н.Н. Семенов (1896-1986г.)

- Лауреат Нобелевской премии (1956 г.)
- Создатель теории механизма свободнорадикальных(цепных) реакций

б) Ионные реакции:

- гетеролитический разрыв связи
- образуются положительные частицыэлектрофиль† Ε (ε)

• *отрицательные* частицы – нуклеофилы – Nu **-**

 $(H^-, OH^-, NH_2, H_2O и т.д.)$

Условия протекания ионных реакций:

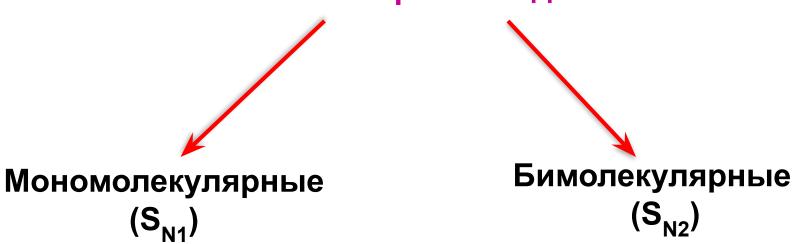
полярные растворители

в) Синхронные реакции – разрыв старых и образование новых связей происходят одновременно.

2) По конечному результату:

S: (реакции замещения, англ. Substitution)

- **S**_R алканы
- **S**_г арены
- **S**_N галогенпроизводные, спирты, карбоновые кислоты


A: (реакции присоединения, англ. Addition)

- **А**_в алкены, алкины
- **А**_г алкены, алкины
- **А**_N альдегиды, кетоны

E (реакции отщепления, англ. Elimination)

ОВР (окислительно-восстановительные)

3) По числу частиц, принимающих участие в элементарной стадии:

II. Электронные эффекты заместителей.

Участок молекулы, где ё - плотность максимальная или минимальная является самым реакционноспособным.

На реакционную способность влияют:

- электронные эффекты заместителей
 - наличие сопряжения
 - пространственные факторы

Электронные эффекты заместителей.

Любой атом или группа атомов, замещающая Н в исходном соединении, называется <u>заместителем</u>.

Влияние заместителей определяется электронными эффектами:

<u>индуктивным (I) и мезомерным (М).</u>

Индуктивный эффект

Индуктивный эффект – перераспределение электронной плотности по системе σ–связей, вызванное разной электроотрицательностью (ЭО) атомов.

$$I_H = 0$$

$$30x < 30c (sp^3)$$

$$+δ$$

$$3 \leftarrow H_2 \leftarrow X$$

$$|\delta_1| > |\delta_2|$$

+I эфф. имеют все R, причем для них I эфф. меняется в следующей последовательности: $CH_3 < C_2H_5 < (CH_3)_2CH < (CH_3)_3C;$ также +I эфф. характерен для Me и иона O^{2-} .

<u>- I эффект</u>

ÝÎ ó > ÝÎ
$$\tilde{n}$$
 (sp³)

$$+\delta_{2} \longrightarrow CH_{2} \longrightarrow Y$$

$$+\delta_{1} \gg \delta_{2}$$

–I эфф.: Hal, NH₂, OH, OR, NO₂, COOH

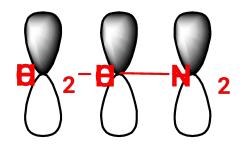
Изображают I эфф. стрелкой вдоль сигма-связи.

І эфф. затухает через 3–4 атома углерода из-за малой поляризуемости сигма-связи С–С.

МЕЗОМЕРНЫЙ ЭФФЕКТ (ЭФФЕКТ СОПРЯЖЕНИЯ)

Мезомерный эффект (М) – перераспределение электронной плотности по системе π-связей.

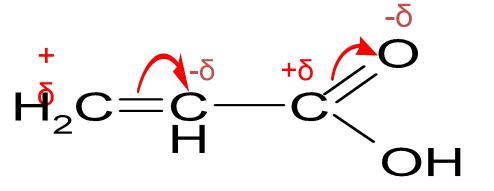
М эфф., в отличие от I эфф., возникает лишь там, где появляется сопряжение.

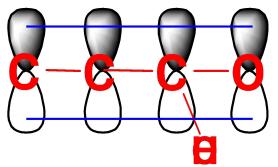

Сопряжение – это выравнивание связей и зарядов в реальной молекуле по сравнению с идеальной.

Сопряжение возникает в результате образования единого π–делокализованного облака, принадлежащего более чем двум атомам.

+М эффект (р- π сопряжение)

$$H_2C = C - NH_2$$


виниламин (аминоэтен)


неподеленная пара электронов (р) N образует единое π -делокализованное облако с π -связью, и на дальнем углероде возникает отрицательный заряд.

+ <u>М эфф</u>.: NH₂, OH, OR, Hal, SH, NR₂ имеют гетероатом, участвующий в р-π сопряжении. Заместитель не имеет двойной связи.

- M эффект (π - π сопряжение)

пропеновая (акриловая) кислота

Две π -связи C=C и C=O объединяются в единое π -делокализованное облако, оно смещается в сторону более ЭО кислорода, происходит уменьшение электронной плотности в π -связи C=C.

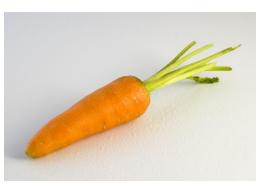
- M эфф. – заместитель имеет π –связь:

$$-\mathbf{C}_{\mathbf{H}}^{\mathbf{O}} - \mathbf{C}_{\mathbf{O}-\mathbf{H}}^{\mathbf{O}} - \mathbf{S}_{\mathbf{O}}^{\mathbf{O}} - \mathbf{C} = \mathbf{N}$$

Суммарный эффект заместителей складывается из I и М эффектов.

В результате заместители делятся на:

- 1) электронодонорные (ЭД);
- 2) электроноакцепторные (ЭА).


ЭД	(+ M > - I)	OH, OR, NH ₂ , NHR, NR ₂ , SH
	(+1)	R
ЭА	(- I, - M)	COOH, CHO, NO ₂ , CN, SO3H
	(- I > + M)	F,CI,Br,I

Сопряженные системы

С открытой це́пью сопряжения

- имеют начало и конец сопряжения
- Представители:
 - бутадиен-1,3
 - изопрен
 - циклопентадиен- (1,3)
 - сорбиновая кислота
 - β-каротин

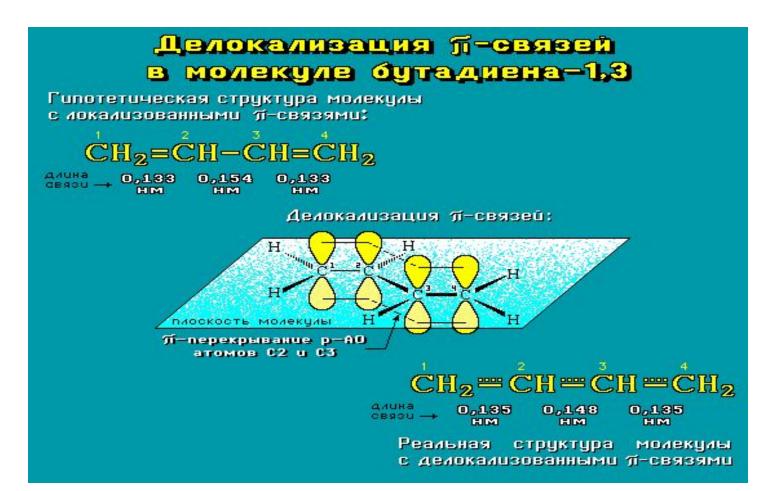
С замкнутой цепью сопряжения

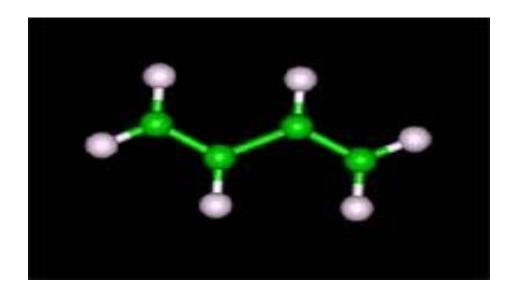
- циклическое сопряжение Представители:
 - арены
 - гетероциклические соединения

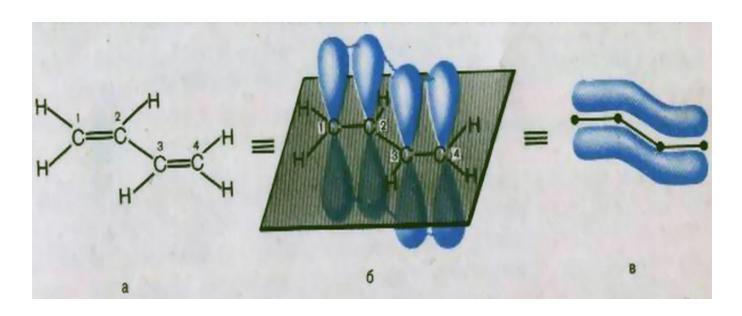
Системы с открытой цепью сопряжения

СОПРЯЖЕНИЕ – это выравнивание связи по энергии и по длине, вызванное образованием π –единого делокализованного облака.

ЭНЕРГИЯ СОПРЯЖЕНИЯ – понижение энергии реальной молекулы, по сравнению с молекулами с изолированными связями.

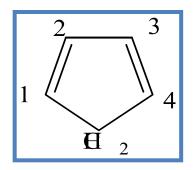

В результате сопряжения молекула становится более термодинамически устойчивой.


NB! Чем больше энергия сопряжения, тем устойчивее молекула!


В сопряженных системах существует чередование двойной и одинарной связей: = - = - = -

Если имеется начало и конец сопряжения – это открытая цепь сопряжения.

бутадиен-1,3: $CH_2 = CH - CH = CH_2$ Е сопр. = 15 кДж/Моль

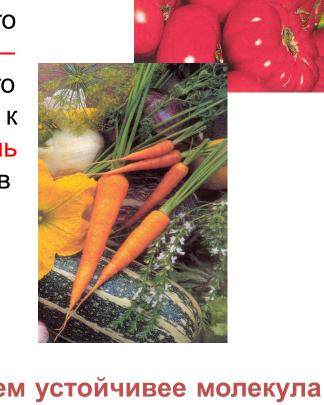


Примеры систем с открытой цепью сопряжения:

2-метилбутадиен-1,3 (изопрен)

ნ)

циклопентадиен-1,3


B)

сорбиновая кислота

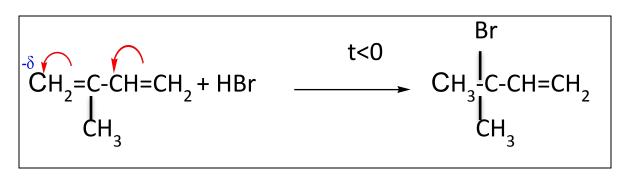
СОДЕРЖИТСЯ В СОКЕ РЯБИНЫ, ЭФФЕКТИВНЫЙ АНТИСЕПТИК.

β-каротин – провитамин А, обуславливает окраску моркови, томатов, масла; имеет сопряженную систему из 11двойных (=) связей. В организме при его расщеплении образуется ретинол – витамин А – (5 =) : витамин роста, его недостаток понижает сопротивление к инфекционным заболеваниям; и ретиналь (6 =): отвечает за поглощение света в зрительном нерве.

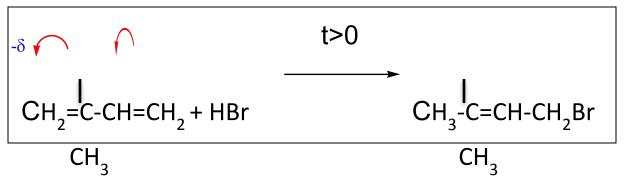
Чем длиннее цепь сопряжения, тем устойчивее молекула к внешним воздействиям!

ОСОБЕННОСТИ РЕАКЦИОННОЙ СПОСОБНОСТИ СОПРЯЖЕННЫХ СИСТЕМ С ОТКРЫТОЙ ЦЕПЬЮ СОПРЯЖЕНИЯ

Химическое поведение молекулы обусловлено эприродой химической связи, распределением электронной плотности.


<u>Особенности химической связи в сопряженных</u> <u>системах:</u>

- Образование π-делокализованного облака, единого для всей молекулы
- 2) Выравнивание длины связи
- (3) Легкая поляризуемость π -облака


Для систем с открытой цепью сопряжения характерны реакции присоединения – A_F (1,4) или A_F (1,2).

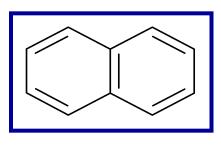
Соотношение продуктов 1,4-присоединения и 1,2-присоединения зависит от:

- 1) природы алкадиена
- 2) электрофильного реагента
- 3) от условий протекания реакции(t, природы растворителя)

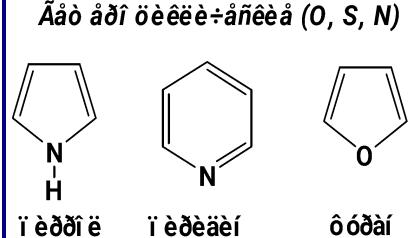
3-бром-3-метилбутен-1 **A**_F **(1,2).**

1-бром-3-метилбутен-2

 $A_{E}(1,4)$

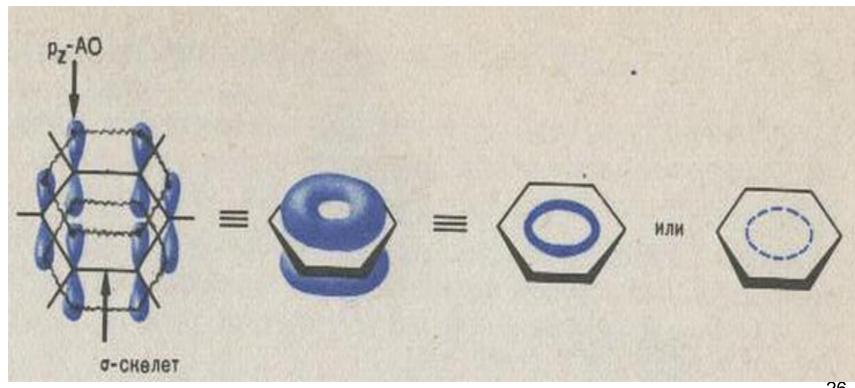

СИСТЕМЫ С ЗАМКНУТОЙ ЦЕПЬЮ СОПРЯЖЕНИЯ (АРОМАТИЧЕСКИЕ)

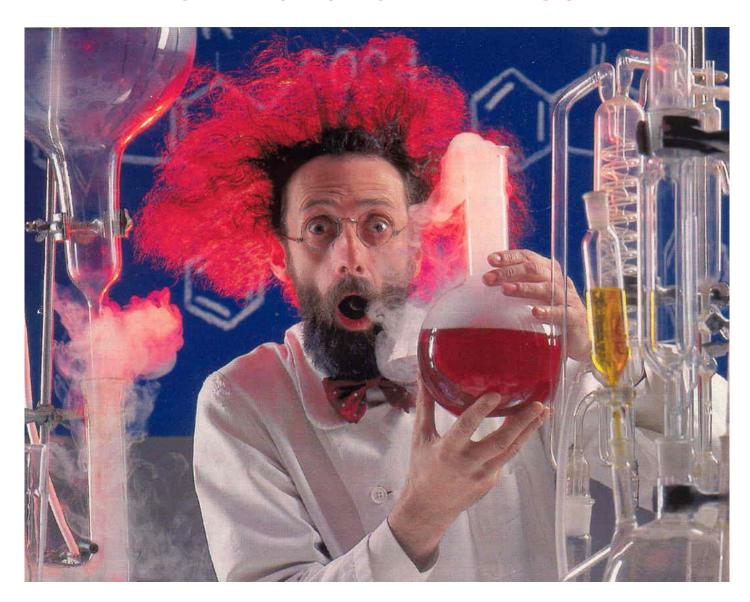
Системы с замкнутой цепью сопряжения за счет круговой делокализации называются **ароматическими.**


Öè ê ë è ÷ å ñ ê è å ñ î i ð y æ å í í û å ñ è ñ ò å ì û
леские Ã å ò å ð î ö è ê ë è ÷

Карбоциклические

нафталин $C_{10}H_8$



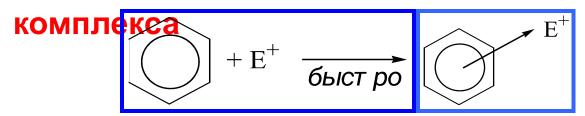

циклопентадиениланион

Условия ароматичности

- 1) Молекула должна иметь плоский замкнутый скелет из освязей, ${\rm sp^2}$ -гибридизацию атомов и единую π -сопряженную систему р-е (π -облако), охватывающую все атомы цикла.
- 2) Число электронов в т-облаке, по правилу Хюккеля, равно 4n+2, где n=1, 2, 3, 4...

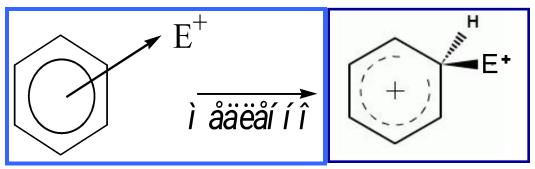
ХИМИЧЕСКИЕ СВОЙСТВА БЕНЗОЛА

Для ароматических УВ характерны реакции, обусловленные замкнутой цепью сопряжения.

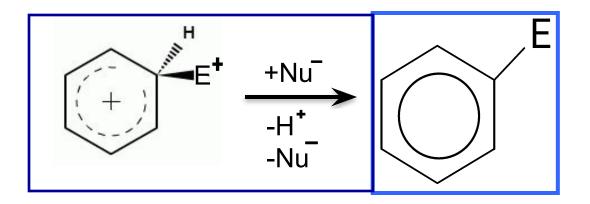

- Устойчивость к окислению (энергия сопряжения =150 кДж/моль);
- •Способность к реакциям S_E (сохраняющим ароматичность)
- Относительная устойчивость к реакциям присоединения А (жесткие условия).

<u>Общая схема S</u>_F

а) Образование электрофильной частицы под действием катализатора:


$$+\delta$$
 - δ кат. $E-Nu$ \longrightarrow E^++Nu^-

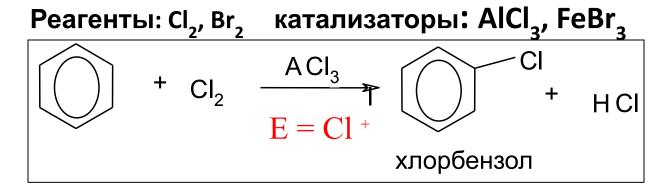
б) Образование π -


<u>π−комплекс</u>: нехимическое соединение, π−облако содержит 6 электронов, ароматический характер не нарушен.

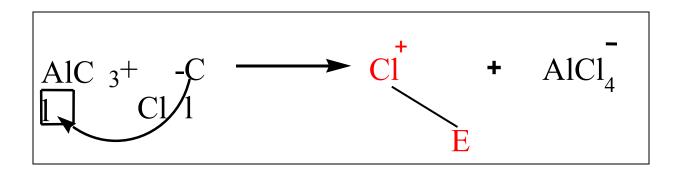
в) Образование σ-комплекса

 σ -комплекс: неароматический, так как в кольце 4 электрона, а не 6 (как требует правило Хюккеля), углерод в sp^3 -гибридизации,а не в sp^2 ,геометрия неплоская.

г) отщепление водорода (H+), возврат к ароматичности:


Химические реакции

- **1)** Галогенирование: <u>Реагенты</u>: Cl₂, Br₂ <u>катализаторы</u>: AlCl₃, FeBr₃
- 2) Нитрование: <u>Реагент</u>: HNO_{3 (конц.)}; УСЛОВИЯ: H₂SO_{4 (конц.)}
- 3) Сульфирование: Peareнт: H₂SO₄ конц. (SO₃)
- 4) Алкилирование образование гомологов бензола (реакция Фриделя-Крафтса): Реагент: R- Г (Г-СІ,Вг,І), катализатор: AICI₃, FeCl₂, FeBr₂
- 5) Ацилирование образование кетонов (реакция Фриделя-Крафтса)


Peareнт: RCOCl, <u>катализаторы</u>: AlCl₃,FeBr₃

Химические реакции

1) Галогенирование

Образование электрофильной частицы под действием катализатора:

2) Нитрование

Реагент: HNO_{3 (конц.)}; УСЛОВИЯ: H₂SO_{4 (конц.)}

$$+$$
 HNO $_3$ (конц. $\frac{H_2SO_4$ (конц. $+$ H $_2O$ нитробензол

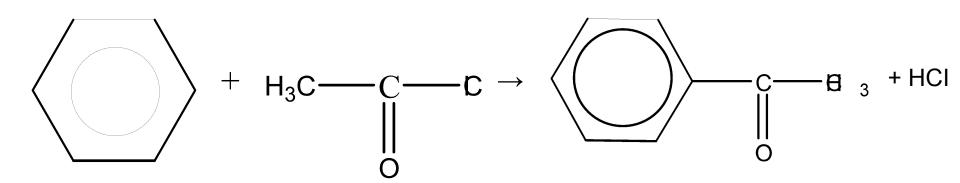
Образование электрофильной частицы под действием катализатора:

$$\frac{\text{HNO}_3 + 2 \text{ H}_2\text{SO}_4}{\text{E}} + 2\text{HSO}_4^{-} + \text{H}_3\text{O}^{+}$$

3) Сульфирование-

Peareнт H_2SO_4 конц. (SO_3)

$$+ H_2SO_4$$
(конц.) $\xrightarrow{SO_3}$ $+ H_2O_3$ бензолсульфокислота


4) Алкилирование – образование гомологов бензола (реакция Фриделя-Крафтса)

Peareнты R – Г, катализаторы AlCl₃, FeCl₃, FeBr₃

$$+ CH_3CI$$
 $+ CH_3CI$ $+ CH_3$ $+ CH_$

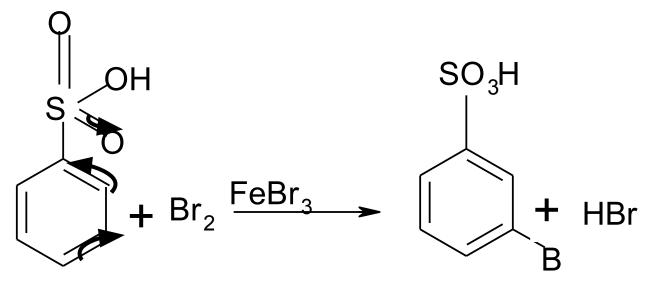
5) Ацилирование (реакция Фриделя-Крафтса)- образуются смешанные кетоны.

Реагенты - RCOГ (галогенангидрид карбоновой кислоты), катализаторы AlCl₃,FeBr3

ацетилхлорид

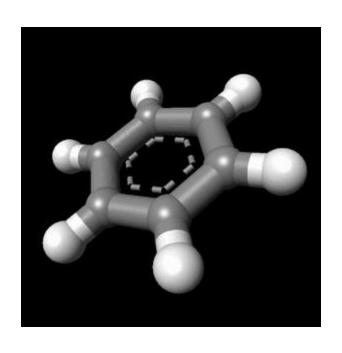
Метилфенилкетон

ПРАВИЛА ЗАМЕЩЕНИЯ В БЕНЗОЛЬНОМ КОЛЬЦЕ



- 1. Первый заместитель встает в любое положение и влияет на распределение электронной плотности в кольце.
- 2. По влиянию на распределение электронной плотности заместители делятся на два рода.

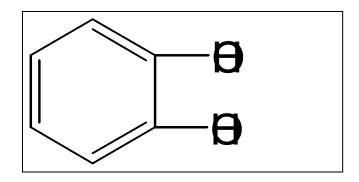
$$CH_3$$
 $+ Br_2$ $AlBr_3$ $+ Br$ $+ 2HBr$ $-6pom-2-$ метилбензол

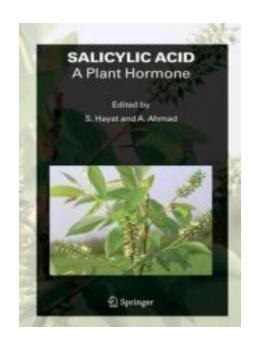

Заместители первого рода - орто- пара — ориентанты, усиливают электронную плотность в кольце (ЭД), активируют реакции S_E : R, CH_2 =CH-, OH, NHR, NR_2 , NH_2 , OR, (CI, Br, I- Θ A)

Заместители второго рода – мета – ориентанты (ЭА), уменьшают электронную плотность в кольце, дезактивируют реакции S_F:

3-бромбензолсульфокислота

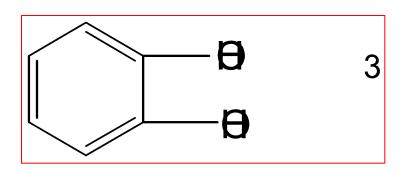
ЛЕКАРСТВЕННЫЕ СРЕДСТВА НА ОСНОВЕ БЕНЗОЛА




Фенолокислоты

Фенолокислоты — это ароматические кислоты, в молекуле которых одновременно с карбоксильной группой имеется фенольный гидроксил. Наибольшую физиологическую активность проявляет -

о-гидроксибензойная, или салициловая,

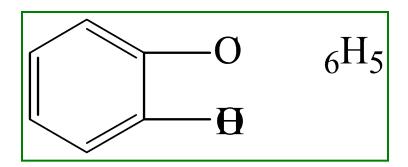

2-гидроксибензойная кислота (салициловая)

ЭФИРЫ САЛИЦИЛОВОЙ КИСЛОТЫ Метилсалицилат

Methylii salicylas Метиловый эфир салициловой кислоты. $C_8H_8O_3$

Производные салициловой кислоты – физиологически активные вещества. Одно из них производное – метилсалицилат.

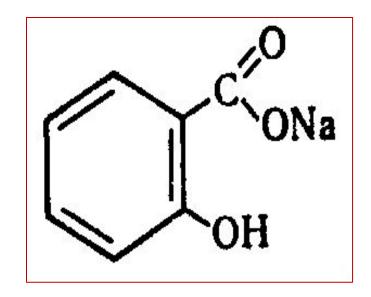
Применяется наружно (из-за раздражающего действия) как обезболивающее, жаропонижающее и противовоспалительное средство, чаще в смеси с хлороформом и жирными маслами для втирания при суставном ревматизме.

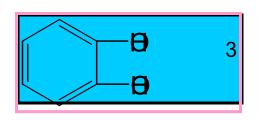

Фенилсалицилат (салол)

Phenylii salicylas

 $C_{13}H_{10}O_3$

Фениловый эфир салициловой кислоты.


Ф. является эфиром салициловой кислоты и фенола. Впервые он был получен М. В. Ненцким в 1886 г.


Обладая способностью проходить желудок неизмененным, фенилсалицилат применяется часто в качестве материала для покрытия пилюль, когда бывает необходимость, чтобы эти пилюли прошли без изменения через желудок и выделили свои ингредиенты в кишечнике.

Салицилат натрия

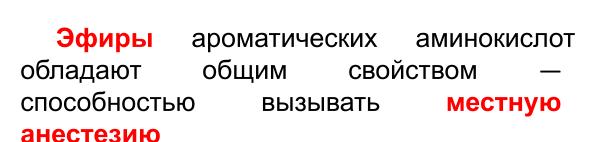
Натрия салицилат лекарственное средство, анальгетик и антипиретик И3 группы производных салициловой Основной профиль кислоты. применения качестве болеутоляющего жаропонижающего средства. Относится к возможным заменам ацетилсалициловой кислоты для чувствительных к ней людей.

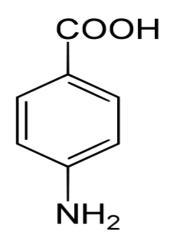
Ацетилсалициловая кислота (аспирин)

Acidum acetylsalicylicum $C_9H_8O_4$ 2-(ацетилокси)-бензойная кислота.

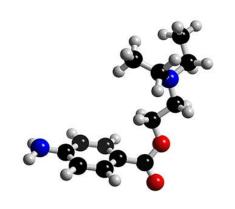
Салициловая кислота впервые была получена путем окисления салицилового альдегида, содержавшегося в растении Таволге (род Spireae). Отсюда её первоначальное название — спировая кислота, с которым связано название аспирин («а» обозначает ацетил).

Ацетилсалициловая кислота в природе не найдена.


Синтез аспирина из салициловой кислоты и уксусного ангидрида



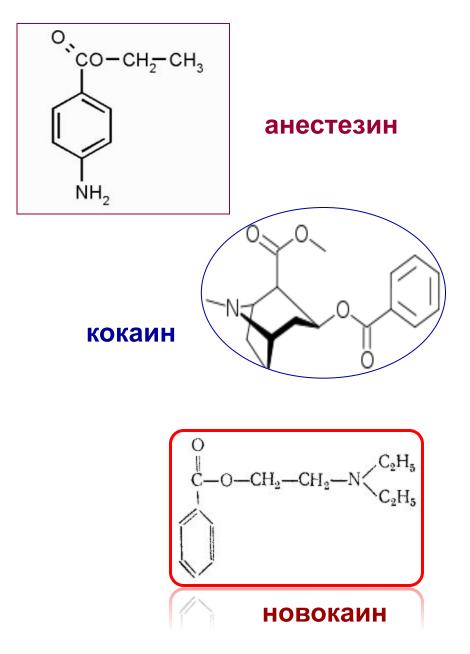
пара-Аминобензойная кислота (ПАБК) и ее производные.


п-Аминобензойная кислота обладает свойствами как ароматических кислот, так и ароматических аминов. Ее называют фактором роста микроорганизмов, поскольку ПАБК участвует в синтезе фолиевой кислоты (витамина В_о).

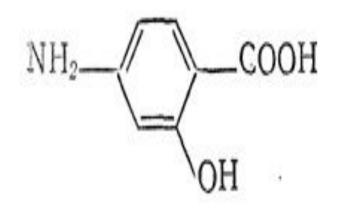
В медицине используют анестезин (этиловый эфир ПАБК) и новокаин (Р-диэтил-иноэтиловый эфир ПАБК).

п-Аминобензойная кислота

IAL


Анестезин и новокаин

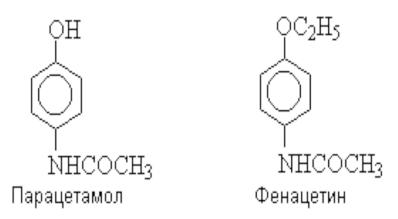
несколько уступают по силе анестезирующего действия кокаину, широко употреблявшемуся ранее в медицинской практике.


Замена кокаина

новокаином вызвана тем,
что при его хроническом
применении развивается
лекарственная зависимость
(кокаинизм).

Новокаин в основе своей структуры имеет те же фрагменты, что и кокаин.

Пара-аминосалициловая кислота

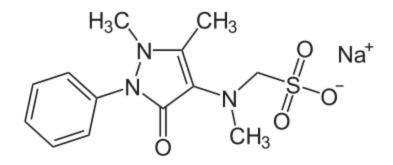

Пара-аминосалициловая кислота (ПАСК) была одним из первых синтетических препаратов, предложенным для специфического лечения туберкулеза.

Препарат обладает бактериостатическим действием только против туберкулезных бактерий.

В отношении других микробов ПАСК неактивна.

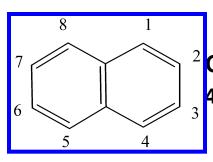
Производные пара-аминофенола

В прошлом фенацетин широко применялся в медицинской практике, однако в последние годы в связи с возможными токсическими явлениями применение фенацетина стало ограниченным.

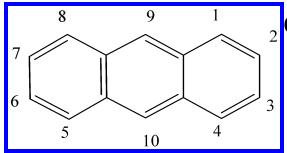

ПАРАЦЕТАМОЛ (Paracetamolum) По болеутоляющей активности парацетамол существенно не отличается от фенацетина; Основными преимуществами парацетамола являются меньшая токсичность, меньшая способность вызывать образование метгемоглобина. Вместе с тем этот препарат может также вызывать побочные эффекты;

Анальгин

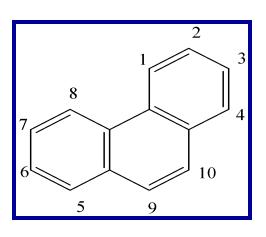
Анальгин (Метамизол натрия) - лекарственное средство, анальгетик и антипиретик из группы пиразолонов. Синтезирован Людвигом Кнорром в 1920 году.


Во многих странах изъят из оборота в связи с риском развития агранулоцитоза.

При возникновении агранулоцитоза вероятность смертельного исхода оценивают примерно в 7 % — в случае доступности медицинской помощи



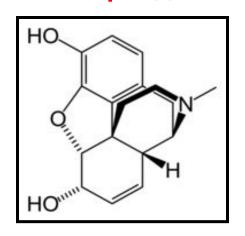
АРОМАТИЧЕСКИЕ МНОГОЯДЕРНЫЕ КОНДЕНСИРОВАННЫЕ СОЕДИНЕНИЯ

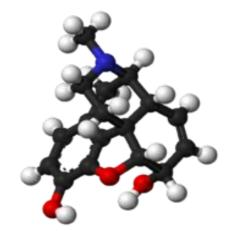


С₁₀Н₈ - нафталин С - sp² -плоский скелет 4 x 2 + 2 = 10 <mark>ē</mark> – по правилу Хюккеля

С₁₄Н₁₀ - антрацен

 $4 \times 3 + 2 = 14 \bar{e}$

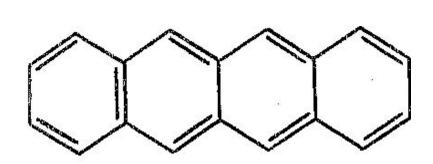


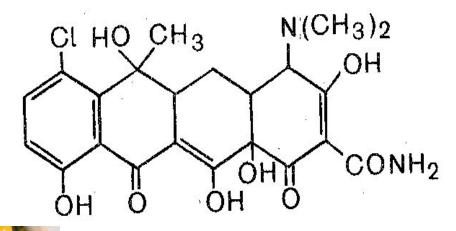

 $C_{14}H_{10}$ фенантрен

 $4 \times 3 + 2 = 14 \bar{e}$

 π -электронное облако охватывает все атомы углерода циклов

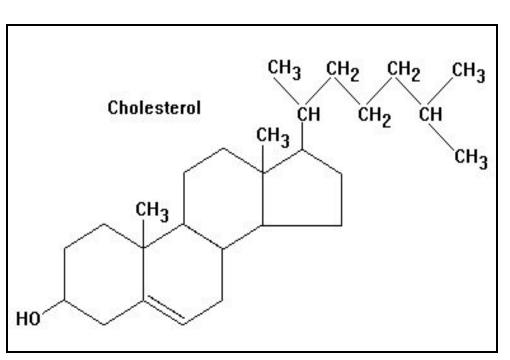
Многие биоактивные вещества имеют аналогичную структуру, поэтому конденсированные углеводороды используют в синтезе лекарственных препаратов. Например, структура фенантрена лежит в основе стероидов и алкалоидов ряда морфина.





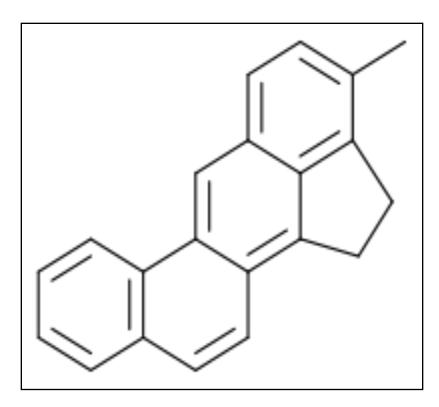
Структура тетрацена – в тетрациклиновых антибиотиках.

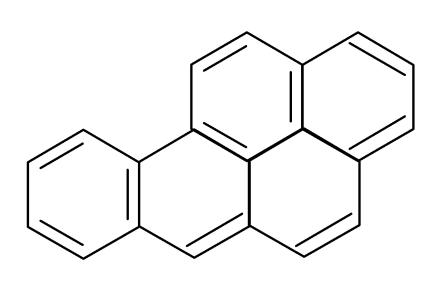
• Эти антибиотики представляют собой производные частично гидрированного нафтацена – соединения, состоящего из четырех линейно конденсированных шестичленных карбоциклов. Тетрациклины обладают широким спектром антимикробного действия и могут быть использованы даже при вирусных заболеваниях.

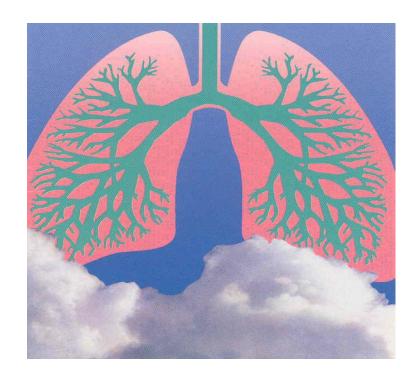

Тетрацен (нафтацен)

Биомицин

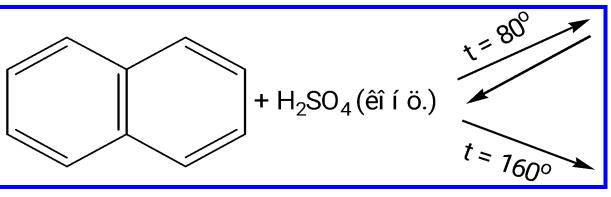
Некоторые многоядерные конденсированные углеводороды обладают канцерогенными свойствами. Они изучаются в связи с проблемами раковых заболеваний.

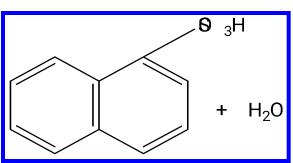

• Из холестерина в организме может образовываться метилхолантрен


• Метилхолантрен - сильнейший канцероген. Образованный в организме при нарушении обмена холестерина, он накапливается в предстательной железе, вызывает рак простаты.

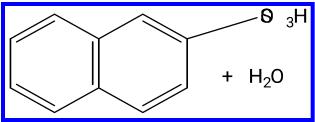


• 3, 4 – бензпирен содержится в табачном дыме, легко окисляется по связям (1,2 и 3,4). Вступает во взаимодействие с NH₂- группами гуанина (в ДНК), что приводит к необратимым изменениям в ДНК и возникновению раковых заболеваний клеток.

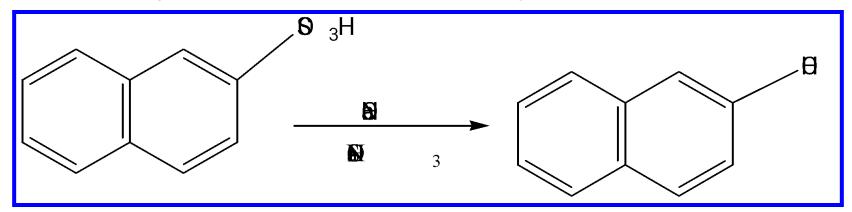



Химические свойства конденсированных систем

Химические свойства подобны свойствам бензола, но в связи с неполной выравненностью электронной плотности имеют особенности:

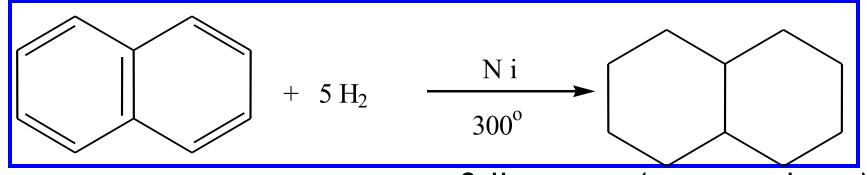

- а) S_E протекают легче, чем в бензоле
- б) достаточно активны в реакциях присоединения и окисления

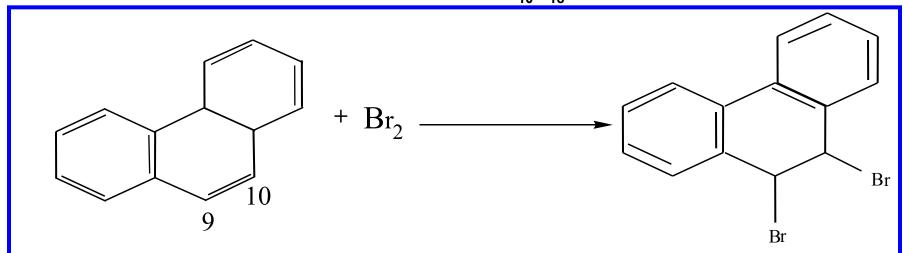
1. S_E протекают в более мягких условиях, чем в бензоле Для нафталина образуется преимущественно α-продукт



α - нафталин сульфокислота

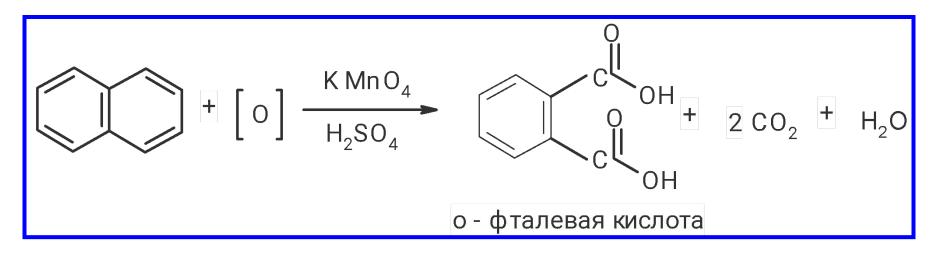
β - нафталинсульфокислота

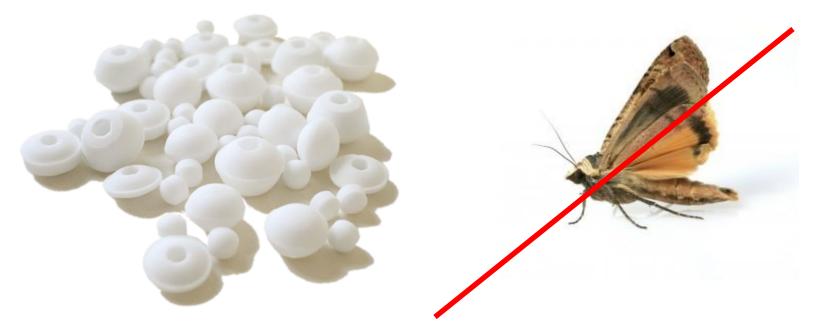

Замена сульфогруппы на гидроксильную в β- нафталинсульфокислоте приводит к образованию β – нафтола, который используется в медицине как дезинфицирующее средство.

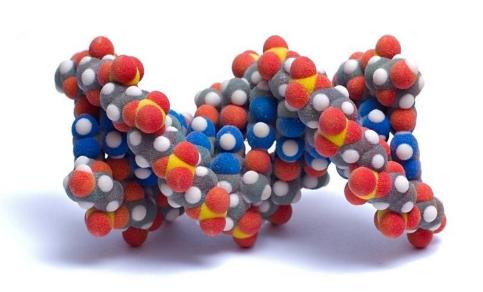


2. Реакции присоединения протекают легче в фенантрене и антрацене, чем в нафталине (в положениях 9, 10).

 C_6H_6 < нафталин < фенантрен, антрацен (в пол. 9, 10)




 $C_{10}H_{18}$ – декалин (декагидронафталин)


9, 10 – дибром- 9, 10 – дигидрофенантрен

3. Менее устойчивы к окислению

Биологически важные гетероциклические соединения

БИОЛОГИЧЕСКИ ВАЖНЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ

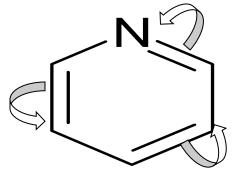
Гетероциклическими называются циклические органические соединения, в состав цикла которых, помимо атомов углерода, входят один или несколько атомов других элементов (гетероатомов).

Гетероциклические соединения

Пятичленные гетероциклы

 $(\pi$ -избыточные)

- С одним гетероатомом
- - С двумя гетероатомами

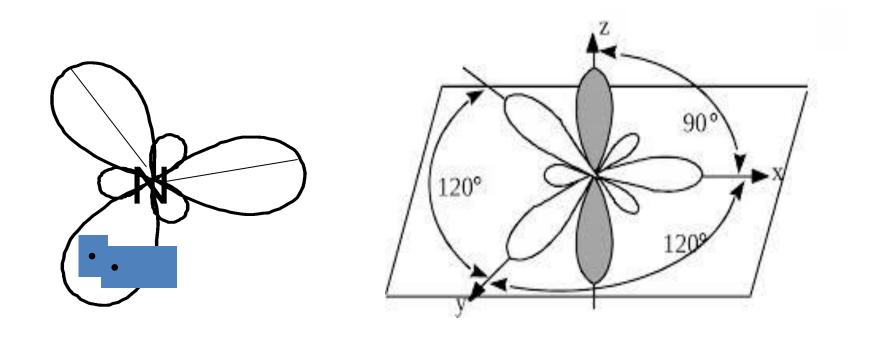

<u>Шестичленные</u> <u>гетероциклы</u>

 $(\pi$ -недостаточные)

- •- С одним гетероатомом
- - С двумя гетероатомами

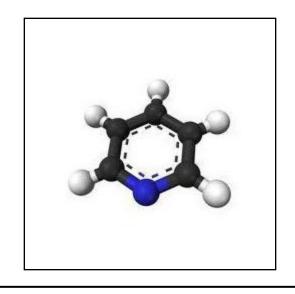
Шестичленные гетероциклы.

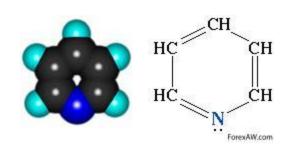
π - недостаточные системы

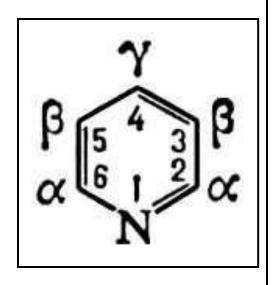

I. ПИРИДИН C₅H₅N

-CH- заменили на -N= (в молекуле бензола ${\color{Myellow}{C_6}}{\color{Myellow}{H_6}})$

Доказательства ароматичности:

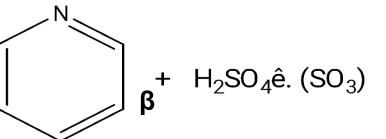

- 1) Плоский скелет из σ -связей, $N-в SP^2$
- 2) π $\bar{\mathbf{e}}$ облако замкнуто, содержит 4 х 1 + 2 = 6 $\bar{\mathbf{e}}$ (правило Хюккеля)
- N вступает в $\pi \pi$ сопряжение и оттягивает электронную плотность на себя ($\ThetaO_N > \ThetaO_C$), в результате в кольце пиридина электронная плотность меньше, чем в C_6H_6 .

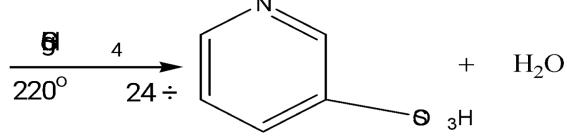

Атом N называют пиридиновым — на внешней sp^2 -гибридной атомной орбитали располагается неподеленная электронная пара, которая придаёт основные свойства C_5H_5N .



ХИМИЧЕСКИЕ СВОЙСТВА π-недостаточных систем

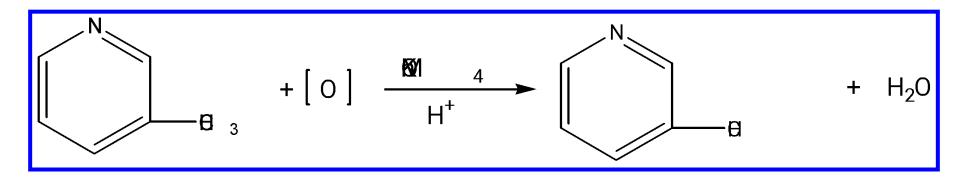
- Реакции S_E. Меньшая реакционная способность, новый заместитель встает в β-положение.
- Основные свойства (у атома N).
- 3) Реакции S_N (в α -положение)





1) Реакции SE.

а) сульфирование

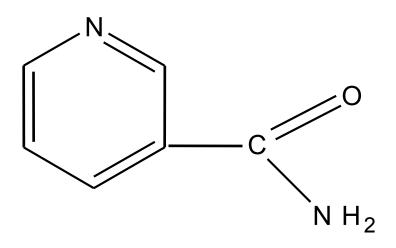


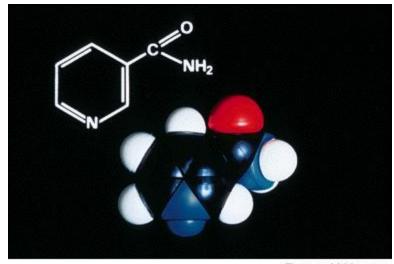
β – пиридинсульфокислота - антиметаболит,
 структурный аналог –
 β – пиридинкарбоновой кислоты.
 (витамина PP)

Окисление гомологов

- β пиколин (β метилпиридин)
 - НИКОТИНОВАЯ КИСЛОТА

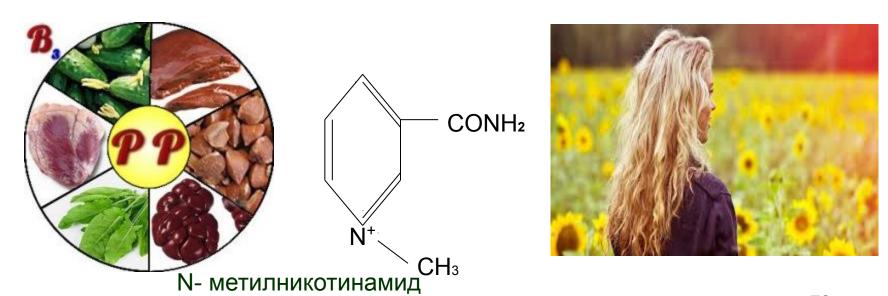
 50 таблеток по 50 мг

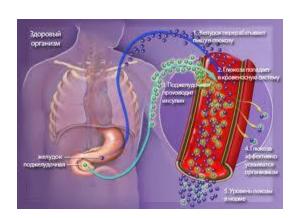

 ОО Фармстандарт-Уфавита", 450077, Уфа.


 19. Хупайсердина, 28. теп./факс (347) 272 208

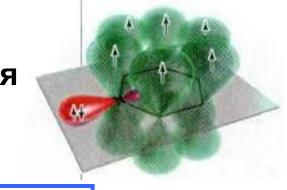
β – пиридинкарбоновая кислота (Никотиновая к-та или витамин РР)

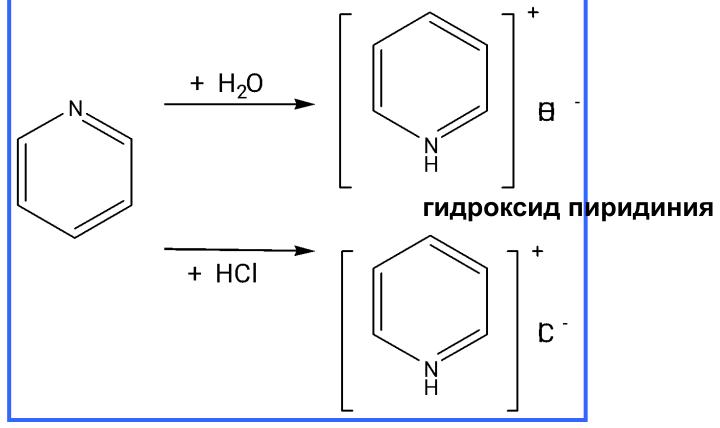
Никотинамид – вторая форма витамина РР



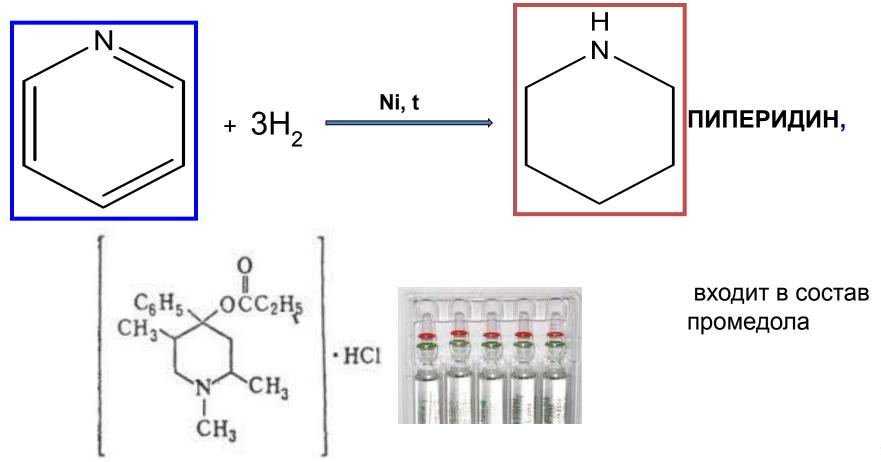


- В организме свободная никотиновая кислота быстро превращается в амид никотиновой кислоты.
- Избыток никотиновой кислоты и её амида выводится из организма с мочой в виде, главным образом, N-метилникотинамида и частично некоторых других их производных.


- •Амид никотиновой кислоты применяется в медицине как лекарственное средство при таких заболеваниях как:
- •Диабет. Способно в определенной степени предотвращать повреждение поджелудочной железы, приводящее к утрате организмом способности вырабатывать собственный инсулин.
- •Остеоартрит. Никотинамид также уменьшает боли и улучшает подвижность суставов при остеоартрите.
- •Профилактика и лечение пеллагры



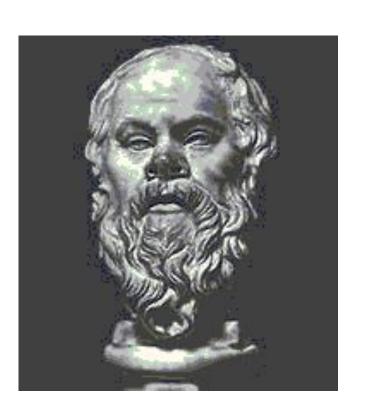
2. ОСНОВНЫЕ СВОЙСТВА проявляются при присоединении H+, образуется катион пиридиния

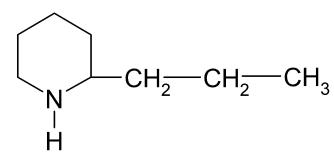


хлорид пиридиния

3. РЕАКЦИИ ПРИСОЕДИНЕНИЯ (ГИДРИРОВАНИЕ)

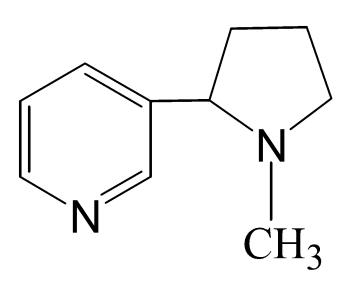
ПРОТЕКАЮТ В БОЛЕЕ МЯГКИХ УСЛОВИЯХ, ЧЕМ В С Н С


Пиперидин и пиридин


- Встречаются во многих алкалоидах: никотин, кониин
- **Алкалоиды** гетероциклические азотсодержащие основания растительного происхождения, обладающие выраженным физиологическим действием

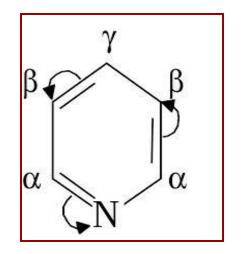
Кониин-производное пиперидина

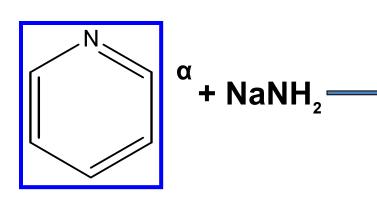
яд, выделенный из болиголова: этим веществом был отравлен Сократ

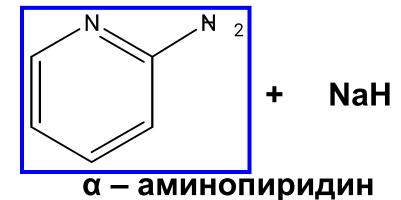

Никотин

Молекула никотина содержит ядро пиридина и метилированного у азота пирролидина (гидрированного пиррола):

Никотин в виде солей лимонной и яблочной кислот **содержится** в листьях табака, откуда его и получают. Содержание никотина в табаке достигает 3% и более.

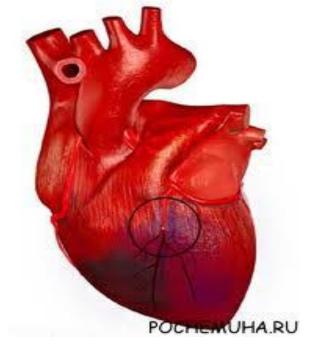






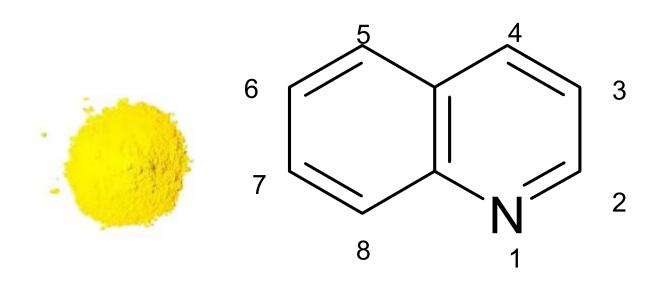
4. РЕАКЦИИ S_N –Заместитель встает в α –положение,где электронная плотность

наименьшая



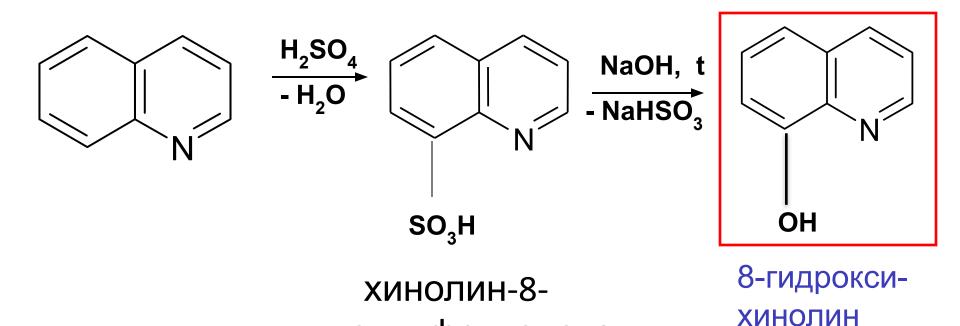
МЕДИКО-БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ

- ВДЫХАНИЕ ПАРОВ ПИРИДИНА МОЖЕТ ПРИВЕСТИ К ТЯЖЕЛОМУ ПОРАЖЕНИЮ НЕРВНОЙ СИСТЕМЫ
- ГОМОЛОГ ПИРИДИНА β ПИКОЛИН ПРЕВРАЩАЕТСЯ В НИКОТИНОВУЮ КИСЛОТУ, НИКОТИНАМИД, КОТОРЫЕ ИЗВЕСТНЫ КАК ДВЕ ФОРМЫ ВИТАМИНА РР,
- ДИЭТИЛАМИД НИКОТИНОВОЙ КИСЛОТЫ КОРДИАМИН ЭФФЕКТИВНЫЙ СТИМУЛЯТОР ЦНС


• ПИПЕРИДИН ВХОДИТ В СОСТАВ ПРОМЕДОЛА, ВСТРЕЧАЕТСЯ ВО

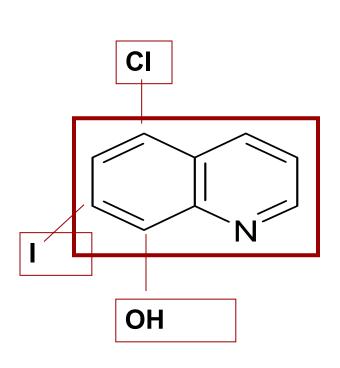
многих алкалоидах.

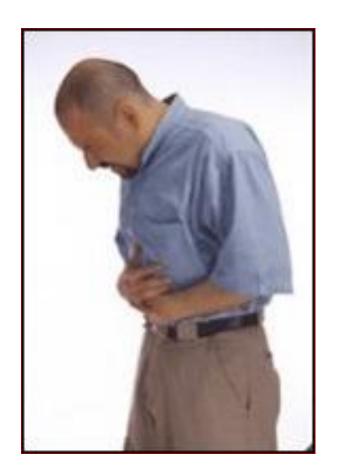
<u>И. Хинолин</u> (бензопиридин) – ароматическое соединение, содержит пиридиновое и бензольное кольцо, относится к π -недостаточным системам.


Имеет плоский σ-скелет и единую сопряженную систему из десяти p – электронов.

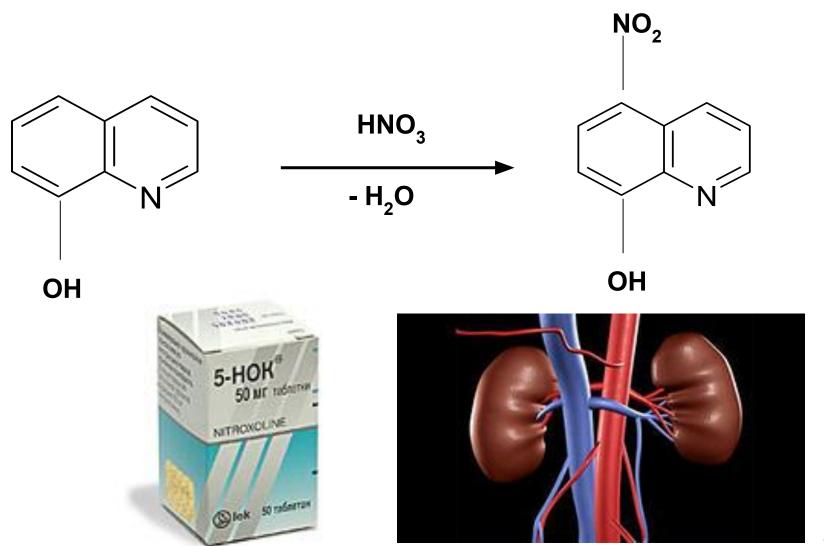
ОСОБЕННОСТИ ХИМИЧЕСКОГО ПОВЕДЕНИЯ ХИНОЛИНА

- В реакциях S_E атаке подвергается бензольное кольцо (кольцо пиридина является π недостаточным).
 Замещение протекает в положении 5 или 8.
 - 2) В реакции S_N может вступать только π недостаточное пиридиновое кольцо (положения 2 и 4).

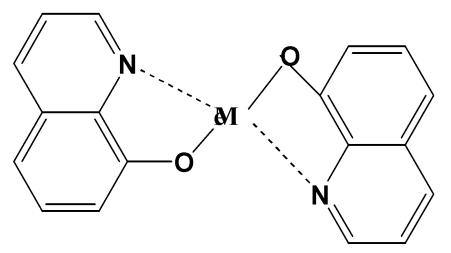




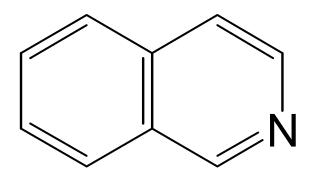
сульфокислота


Реакция сульфирования лежит в основе получения 8 – гидроксихинолина.

Антибактериальным действием обладают такие производные 8 – гидроксихинолина, как энтеросептол (8 – гидрокси – 7 иод – 5 хлорхинолин)

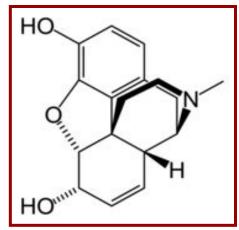


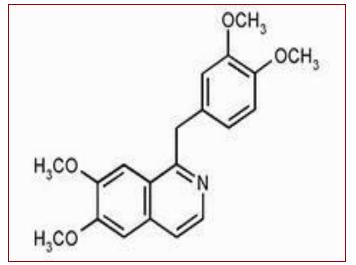
и *нитроксолин,* или 5 – НОК (8 – гидрокси – 5 – нитрохинолин), который может быть получен нитрованием 8 – гидроксихинолина



Бактерицидное действие средств на основе 8 – гидроксихинолина заключается в их способности связывать в прочные комплексы ионы Ме (Co²⁺, Cu²⁺, Bi³⁺ и другие). Таким путем происходит выведение микроэлементов, необходимых для жизнедеятельности кишечных бактерий.

хелат 8-гидроксихинолина


III. ИЗОХИНОЛИН

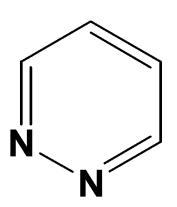

ВХОДИТ В СОСТАВ АЛКАЛОИДОВ РЯДА

МОРФИНА

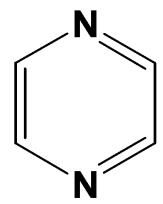
И ПАПАВЕРИНА

Применяют **морфин** как болеутоляющее средство при травмах и различных заболеваниях, сопровождающихся сильными **болевыми** ощущениями.

А так же при подготовке к операции, при бессоннице, иногда при сильном кашле.

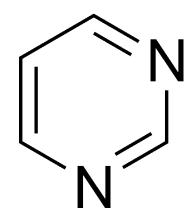

<u>Шестичленные гетероциклы с несколькими</u> <u>гетероатомами</u>

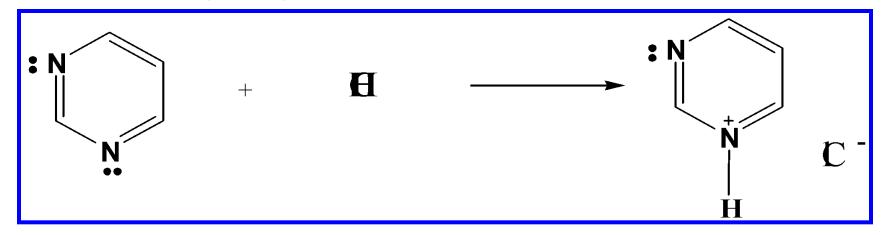
Гетероциклы, содержащие два атома азота называются **диазины** и различаются взаимным расположением атомов азота.


пиридазин

пиримидин

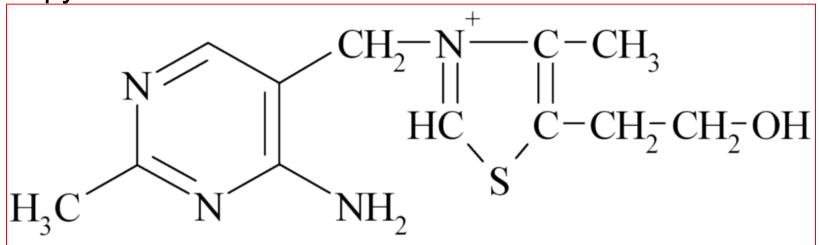
пиразин



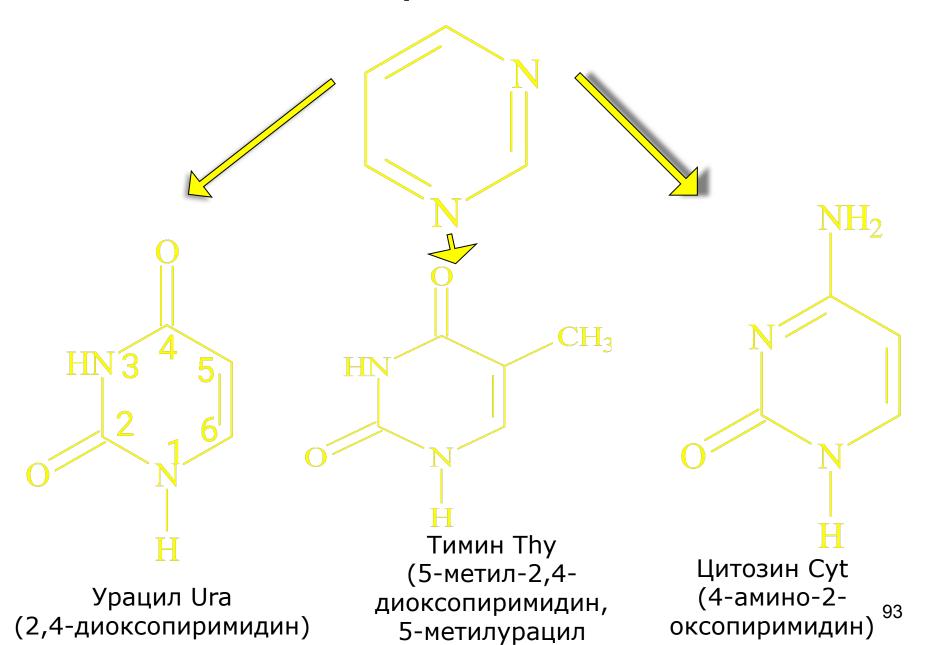


IV. Пиримидин

Особенности реакционной способности


1) менее основное соединение, чем пиридин (2N конкурируют)

2) Почти не вступает в реакцию S_{F}


Биологическое значение

- 1) входит в состав:
 - а) нуклеиновых кислот в форме NH₂ и OH производных пиримидин (урацил,тимин,цитозин)
 - **б) витамина В₁ тиамина**, одного из важнейших витаминов. В₁ содержит два гетероциклических кольца пиридиновое и тиазольное, связанные метиленовой группой

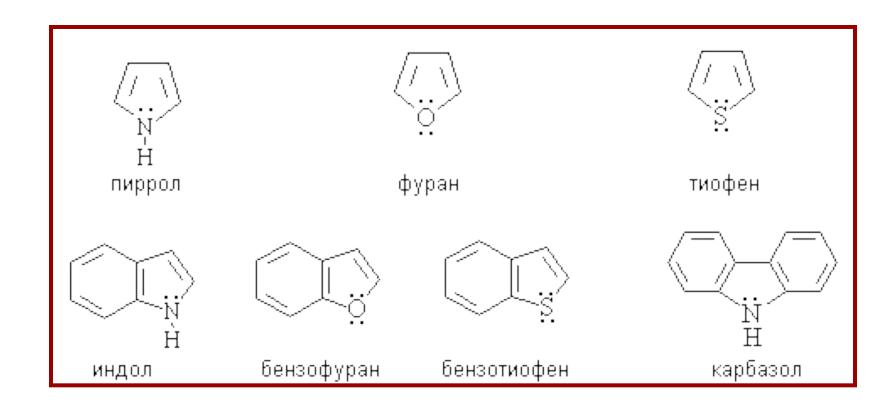
Пиримидиновые основания

Пиримидин

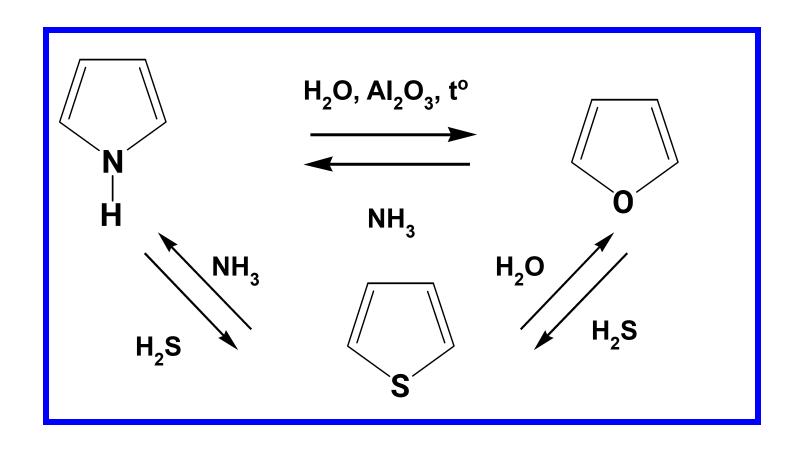
Свойства тиамина

- Играет важную роль в метаболизме углеводов и жиров.
- Незаменим для утилизации глюкозы
- Поддерживает работу сердца, нервной и пищеварительной систем.
- Недостаток витамина в пище приводит к тяжелому заболеванию «бери-бери»

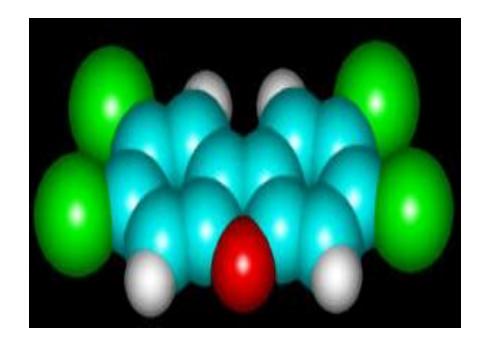
Источники витамина тиамина



<u>Пятичленные гетероциклические</u> <u>соединения</u>

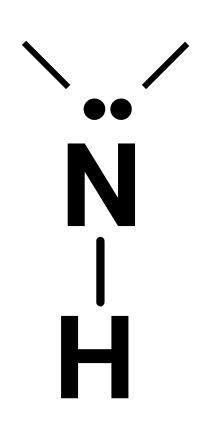

Пятичленные гетероциклические

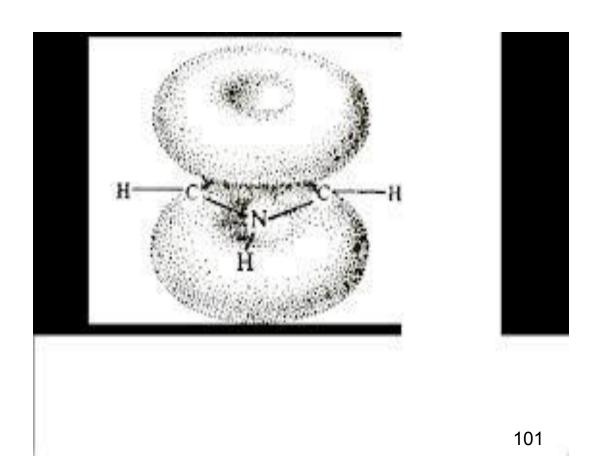
ДОКАЗАТЕЛЬСТВА АРОМАТИЧНОСТИ


- 1) Замкнутые циклические плоские скелеты (атомы углерода и азота в sp² гибридизации)
- 2) $4n + 2 = 4 \times 1 + 2 = 6 (\bar{e})$
- π избыточные,т.к. N(O) вступает в р- π сопряжение,электронная плотность в кольце увеличивается, кроме того, 6 $\bar{\rm e}$ приходится на 5 атомов цикла. В результате электронная плотность в пирроле больше чем в C6H6

ГЕНЕТИЧЕСКАЯ СВЯЗЬ

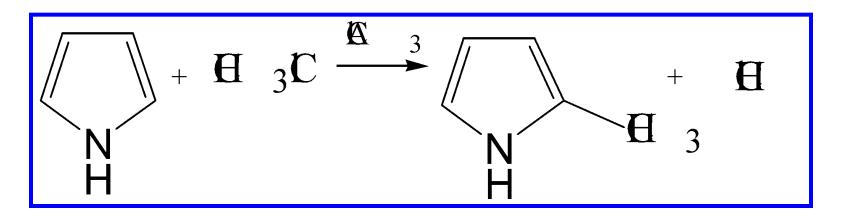
І. ФУРАН





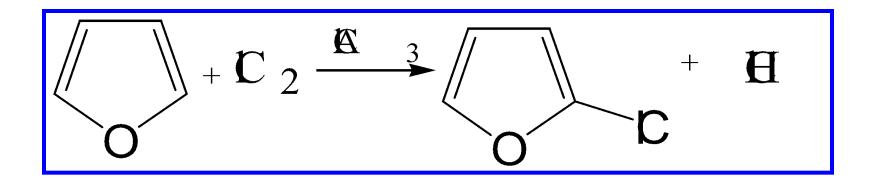
ПИРРОЛ

Пиррольный атом азота имеет неподеленную электронную пару и участвует в р- π сопряжении. Связь N–H ослабляется, и пиррол проявляет кислотные свойства.



ХИМИЧЕСКИЕ СВОЙСТВА π-избыточных систем

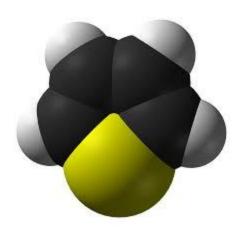
- 1) Реакции S_{E.} Большая реакционная способность, чем у C₆H₆, заместитель встает в α –положение,где сосредоточена большая электронная плотность:
 - а) алкилирование
 - б) галогенирование
 - в) ацилирование
 - г) сульфирование
 - д) нитрование
 - 2) Слабокислые свойства образование солей.


1. Реакции SE

а) алкилирование

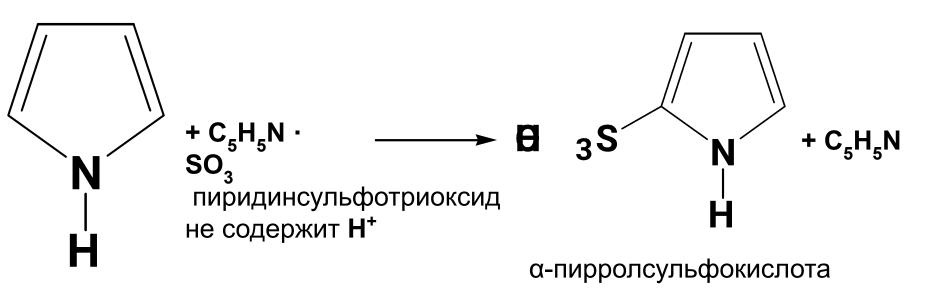
α-метилпиррол

б) галогенирование

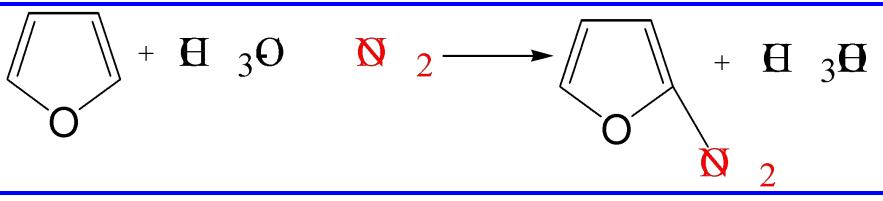


α-хлорфуран

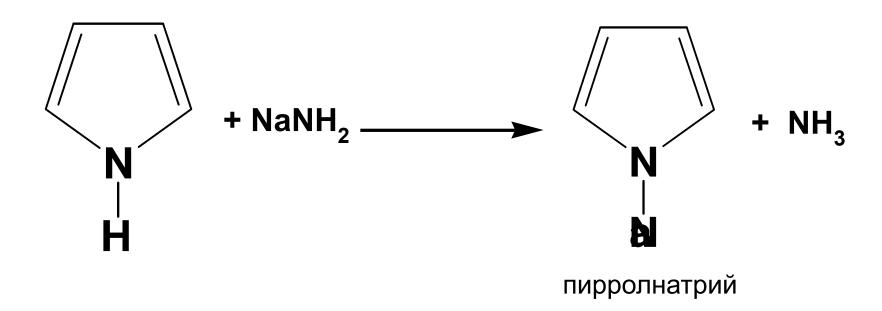
Пиррол и фуран обладают свойствами ацидофобности (т.е. разрушаются в кислой среде.


Реагент не должен содержать H⁺)

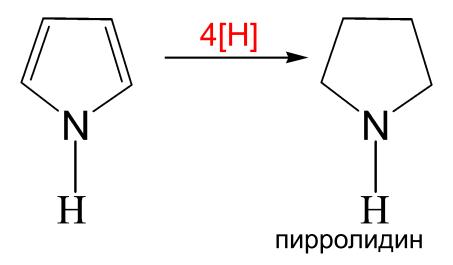
Тиофен – более ароматичен, не боится кислоты.



б) сульфирование

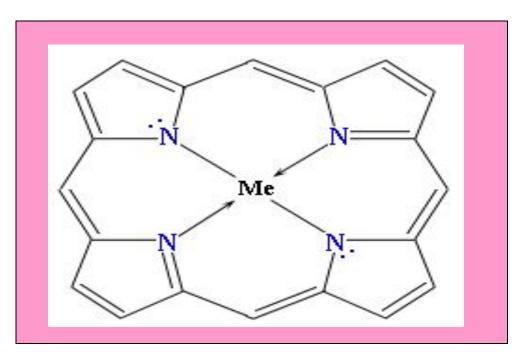


г) нитрование



ацетилнитрат не содержит Н⁺ α-нитрофуран

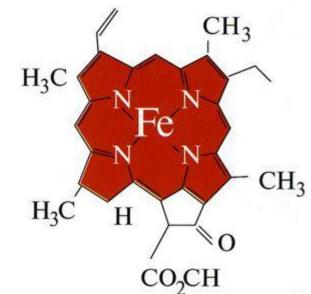
2) Слабокислые свойства (Н замещается на Ме, образуются соли)

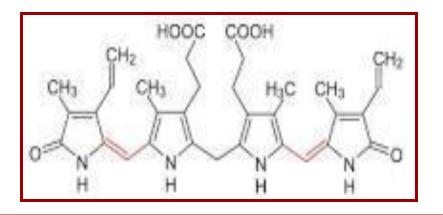


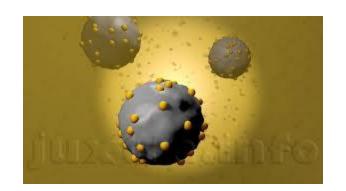
3) восстановление пиррола:

Входит в состав лекарственных средств, некоторых алкалоидов,α-аминокислоты пролина.

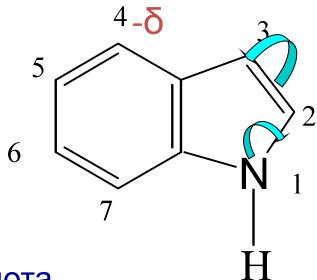
Пиррол образует кольца из четырех пиррольных циклов – порфиновые, (если водород замещается, то – порфириновые). Входит в состав хлорофилла, гемоглобина.






•При биологическом окислении в печени гемоглобина и других порфиринсодержащих метаболитов образуются билирубиноиды.

•Они содержат линейную тетрапиррольную структуру.



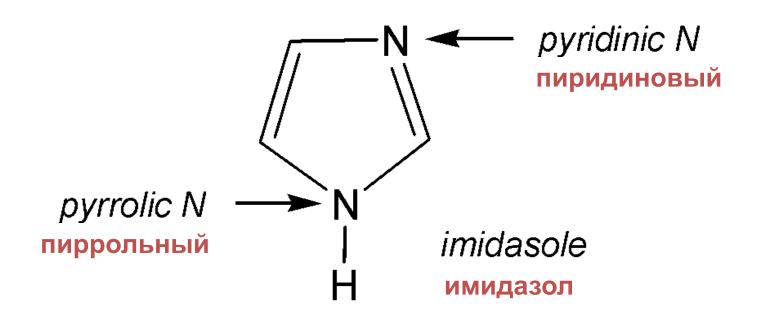
•Наиболее важный - билирубин имеет оранжевую окраску.Билирубины - пигменты желчи

<u>V. ИНДОЛ (БЕНЗОПИРРОЛ)</u>

- □ Слабая NH-кислота.
- □ Вступает в реакции S_F (положение 3).
- □ Биологически активные производные –триптофан и продукты его метаболизма (серотонин)

БИОЛОГИЧЕСКИ АКТИВНЫЕ ПРОИЗВОДНЫЕ ИНДОЛА

Триптофан – α-амино-β-(β'-индолил) пропионовая кислота. Входит в состав полипептидов растительных и животных организмов. Участвует в реакции гидроксилирования (получение 5-гидрокситриптофана, который подвергается декарбоксилированию с образованием 5-гидрокситриптамина(серотонина)



H N H

<u>Серотонин</u> является одним из нейромедиаторов головного мозга.
Нарушение его нормального обмена ведет к шизофрении. Гормон

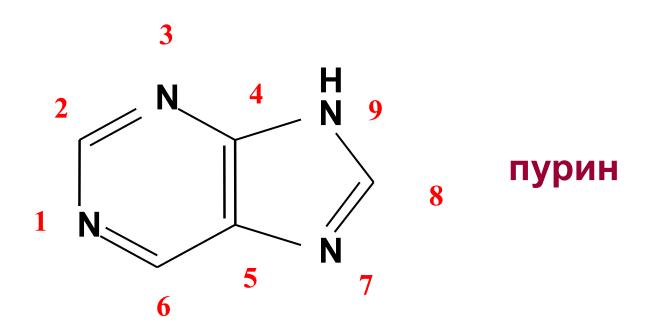
удовольствия.

VI.Имидазол

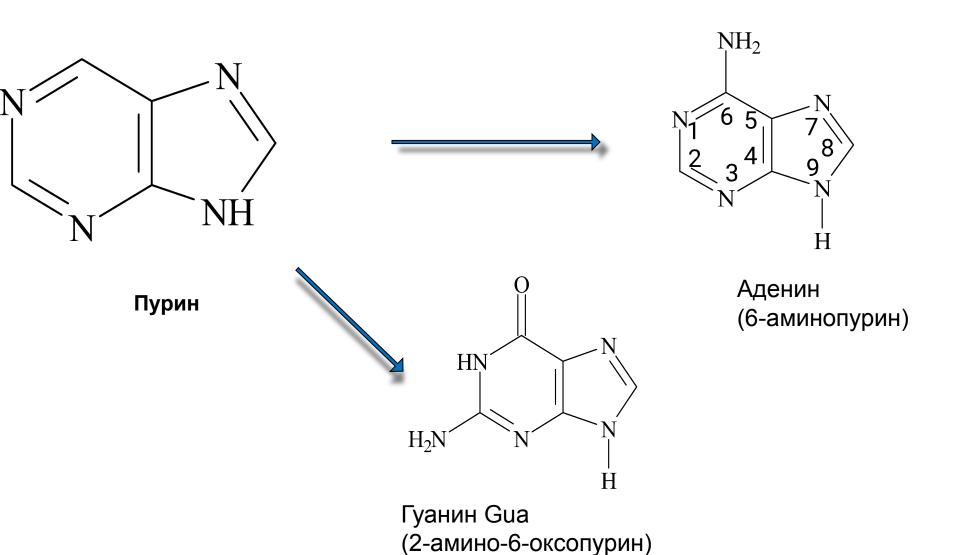
<u>Имидазол - амфотерное соединение</u>

- 1. Проявляет **слабокислотные** свойства за счет **пиррольного N**
- 2. Слабоосновные за счет пиридинового N
- образует соли с сильными кислотами и щелочными металлами
- NH кислотная группа и –N= основная образуют межмолекулярные водородные связи

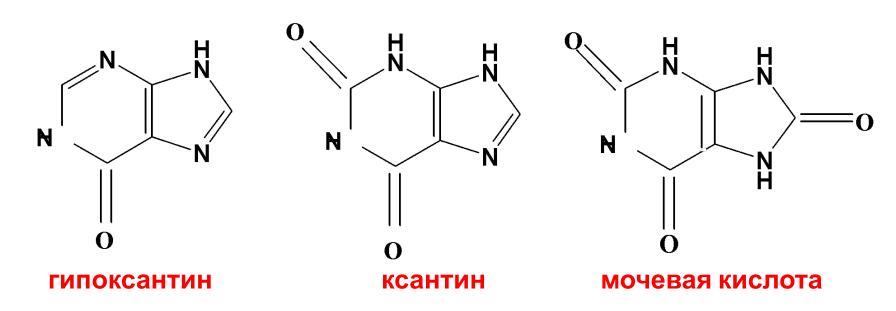
Биологически активные производные имидазола


Гистидин - α-амино-β-(4(5)'-имидазолил) пропионовая кислота.
Входит в состав многих белков-глобина Участвует в ферментативных реакциях (кислотный и основной катализ)

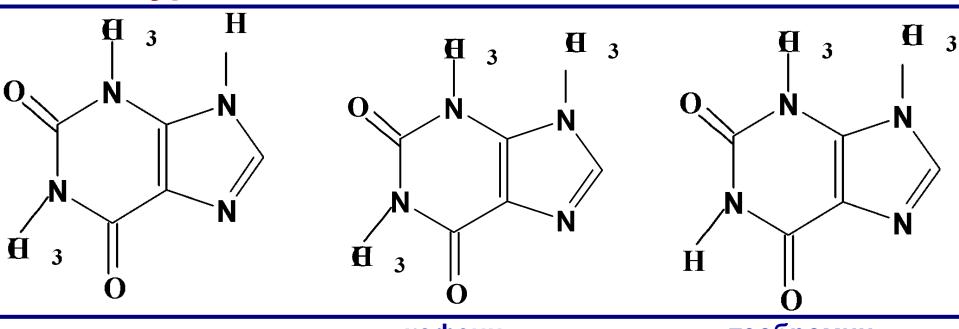
VII.Пурин


Важнейшая конденсированная гетероциклическая система – пурин состоит двух сочлененных колец – *имидазола* и *пиримидина*.

Свойства пурина


- 1) Устойчив к действию окислителей
- 2) Хорошо растворяется в воде
- 3) Амфотерен, образует соли не только с сильными кислотами, но (благодаря наличию NH группы) и со щелочными Me.
- Наиболее важны гидрокси и аминопурины, принимающие активное участие в процессах жизнедеятельности.

Пуриновые основания, входящие в состав <u>РНК и ДНК.</u>



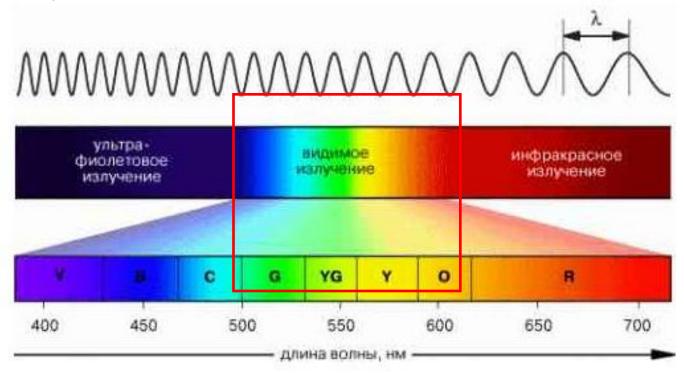
Гипоксантин, ксантин, мочевая кислота -

продукты превращения нуклеиновых кислот в организме

К пуриновым алкалоидам относятся:

теофиллин кофеин теобромин (чай) (чай, кофе) (какао) Эти алкалоиды оказывают возбуждающее действие на центральную

нервную систему.



Электронная спектроскопия (ультрафиолетовая)

Электронная

При поглощении молекувей вещекова мяектромагнитного излучения, соответствующего УФ (180-400 нм) и видимой (400-800нм) областям спектра происходит определенный переход валентных электронов с занятых орбиталей основного электронного состояния на вакантные орбитали возбуждённого.

Большинство электронных переходов в молекулах проявляются

в диапазоне 200-750 нм, который подразделяется на два

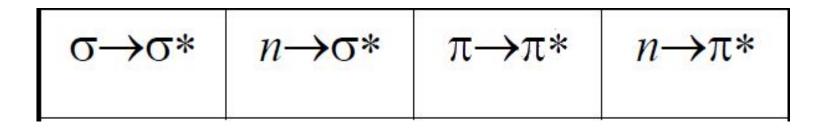
поддиапазона

<u> 200-400 нм — ближняя ультрафиолетовая область;</u>

Ультрафиолетовая(УФ) спектроскопия изучает поглощение органическими веществами света в ультрафиолетовой области спектра (длина волны от 200 до 400 нм).

Излучение с такой длиной волны поглощают только соединения, содержащие $\underline{\textit{П- связи (C=C,C=O u dp.).}}$

<u>400-750 нм — область видимого света</u>


(область чувствительности человеческого глаза.)

Энергия электронного перехода ΔE связана с частотой электромагнитного излучения v и длиной волны λ соотношением ΔE = hv= hc/λ ,

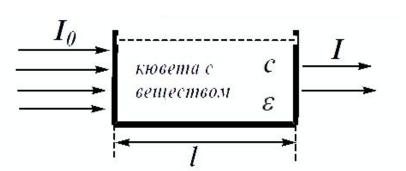
где h-постоянная Планка, а c-скорость света

• Возможны четыре типа электронных переходов со связывающих и несвязывающих орбиталей основного состояния на разрыхляющие орбитали возбуждённого состояния:

Используемые обозначения <u>σ, σ* π, π* ,n</u> означают следующее:

σ, σ* - уровни простых σ -связей: О-H, N-H, C-H, C-C, C-O, C-N, C-Hal и др.

 π , π^* - уровни кратных π -связей: C=C, N=N, C=N, C=O и др.

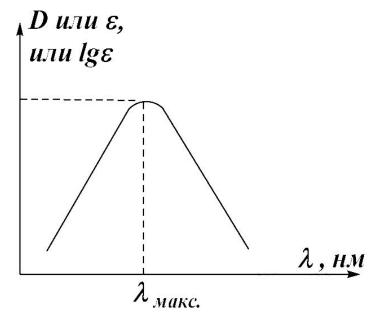

л - уровень несвязывающих неспаренных
 электронов, не участвующих в образовании
 химических связей:

О: , N ,S: , Hal: и др. Наиболее информативны полосы поглощения, обусловленные π - π * u n - π * n - Электронный спектр записывается в виде графика зависимости интенсивности поглощения (оптической плотности D) от длины волны λ, выражаемой в нм или волнового числа v (1/ λ), выражаемого в см⁻¹.

Связь оптической активности D и молярной концентрации поглощающего вещества в растворе показывает основной закон оптической спектроскопии

- закон Бугера –Ламберта –Бера-

$$D = \lg \frac{I_0}{I} = \varepsilon \times c \times l$$

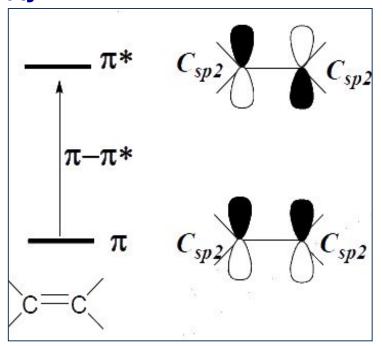

D— оптическая плотность; ε-молярная экстинция .(молярный коэффициент погашения).
 I₀-интенсивность падающего света
 I-интенсивность прошедшего через раствор света

С-концентрация вещества, моль/л;

I — длина пути света, см;

 Электронные спектры поглощения в УФ- и видимой областях (называемые просто УФ-спектрами) характеризуются графиком в координатах D (или Ig D) и

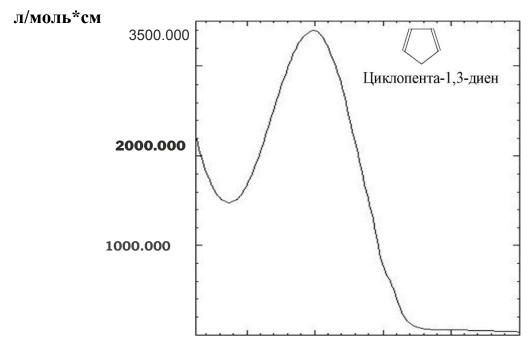
(или <mark>∨</mark>).



 При описании веществ обычно приводят только значения длины волны и интенсивности в максимуме полосы поглощения (λ и D или (ε)

Связь УФ-спектров со строением молекул

- Положение полос поглощения в УФ- спектре зависит от строения молекул
- Структурные группы (кратные связи, ароматические фрагменты), обусловливающие избирательное поглощение УФ-света, называются хромофорами,.
- Ауксохромы группы ,вступающие в р,π-сопряжение с хромофорами (NH₂,OH,SH и др.)
- Поглощение изолированных хромофоров обусловлено π – π^* и (или n- π)
 - электронными переходами, особенно в сопряженных системах


 Ненасыщенные соединения с изолированными кратными связями имеют полосы поглощения, соответствующие π – π*переходу в области 170-200нм.

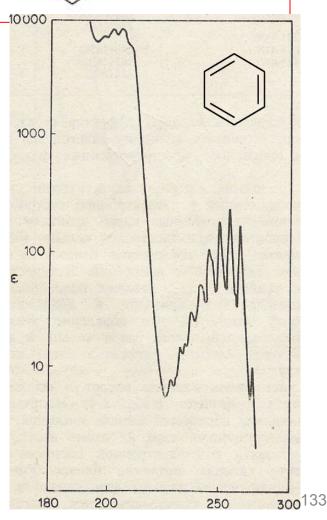
Метод электронной спектроскопии чувствителен к наличию в молекуле сопряженных фрагментов.

Вещества, не имеющие двойных связей, не поглощают УФ-излучения

- УФ –спектр обычно состоит из одной широкой полосы поглощения, положение которой указывает на окружение двойной связи в молекуле. Чем большее число двойных связей в молекуле образует цепь сопряжения, тем больше длина волны поглощаемого света.
- Сравним длины волн поглощаемого света в циклопентадиене (2 двойные связи и каротиноидных пигмента/ф-спектр циклопента-1,3-диена

Лмакс = 240 нм

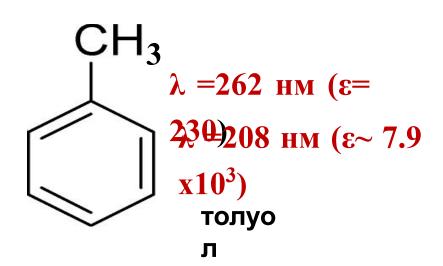
Природные каротиноидные пигменты

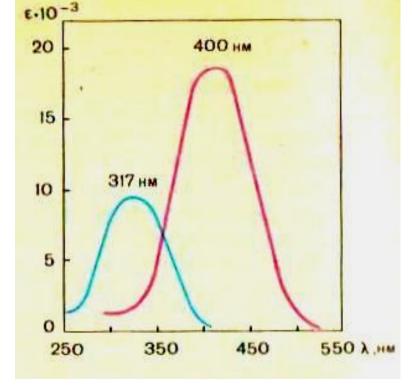

лютеин (яичный желток), жёлтый цвет, $\lambda_{\text{макс.}} = 430 \text{ нм}$

 β -каротин (морковь), жёлто-оранжеый цвет, $\lambda_{\text{макс.}} = 453 \text{ нм}$

ликопин (томаты, шиповник), красный цвет, $\lambda_{\text{макс.}} = 500 \text{ нм}$

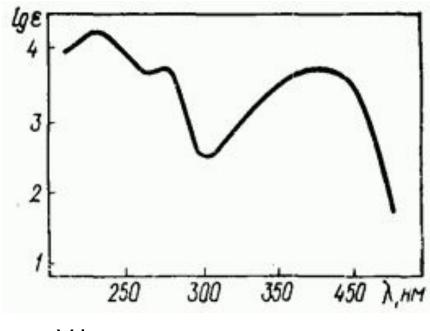
Бензол


- Соединения, содержащие бензольные кольца и гетероциклы, имеют в УФ-спектрах интенсивные полосы поглощения
- Для бензола характерны три полосы поглощения:
- 180 нм,204 нм и в области 230-260- нм (ряд полос).
- Они обусловлены <u>π-π*</u> <u>переходами.</u>

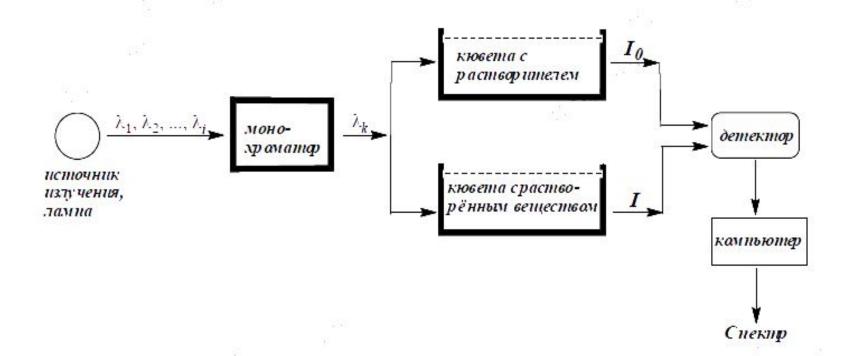


Замещённые бензолы

Если ароматическое кольцо сопряжено с электронодонорными или электроноакцепторными заместителями, а также кратными связями, то наблюдается значительное батохромное смещение (смещение в длинноволновую часть спектра) полос поглощения с увеличением их


интенсивности.

Спектр п-нитрофенола и п-


- Кроме того, возможно появление полос поглощения, обусловленных электронным переходом с вкладом внутримолекулярного переноса заряда (ВПЗ).
- В этих случаях происходит <u>уменьшение электронной</u> плотности в одном фрагменте молекулы с <u>увеличением её- в другом.</u>
- Полосы поглощения соединений, содержащих в бензольном кольце одновременно электронодорные и электроноакцепторные заместители (например нитроанилин), имеют сложное происхождение

УФ –спектр нитроанилина

Для интерпретации таких спектров используют квантовохимические расчеты. Они позволяют идентифицировать полосы поглощения, обусловленные переходами с вкладом ВПЗ от донора к кольцу, от кольца к акцептору и от донора к акцептору.

Схема оптического спектрометра

УФ- спектрофотометры

УФ-спектрофотометр "Lambda 35" (Perkin-Elmer, США

Спектрофотометры серии DU 800

Однолучевой спектрофотометр ЮНИКО 2800, диапазон 190-1100 нм,

Регистрация электронных спектров

Рабочий диапазон спектрометров 200-750 нм.

Можно регистрировать спектры газов, жидкостей и твердых тел.

Для получения спектра необходимо — 0.1-1 мг вещества.

Спектры обычно регистрируют в виде растворов в гексане, этаноле, воде и др. растворителях в кюветах их кварца (прозрачен до 180 нм).

Источники излучения — дейтериевые (180-400 нм), вольфрамогалогенные (400-800 нм) лампы.

• Применение метода электронной спектроскопии

- Идентификация органических соединений-сравнение спектра исследуемого соединения со спектрами соединений известной структуры.
- Изучение кинетики и контроль за ходом реакции.
- Изучение пространственного строения.
- Количественный анализ содержания действующих компонентов в составе лекарственной формы

СПАСИБО ЗА ВНИМАНИЕ!

