# Национальный исследовательский ядерный университет МИФИ Обнинский институт атомной энергетики (ИАТЭ)

## Отчет по курсовому проекту «АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ»

Вариант №26

Выполнила: Шабунина Н.В.

Студентка группы: Э-Б18

Проверил: Слободчук В.И.

#### Цель курсового проекта

- Разработка развернутой тепловой схемы энергоблока АЭС
- Расчет тепловой схемы и определение потоков пара и воды на отдельные элементы турбоустановки
- Определение тепловой экономичности машинного зала
- Оценка общего расхода воды в системе технического водоснабжения и выбор системы технического водоснабжения
- Выбор основного оборудования энергоблока и его обоснование
- Подсчёт затрат на собственные нужды и определение КПД нетто и брутто АЭС

# Исходные данные

|    | Наименование                                  | Обозначение | Величина   |
|----|-----------------------------------------------|-------------|------------|
| 1  | Электрическая мощность энергоблока            |             | 1000 МВт   |
| 2  | Давление острого пара                         |             | 7,2 МПа    |
| 3  | Температура питательной воды                  |             | 133 °C     |
| 4  | Температура промперегрева                     |             | ts – 15 °C |
| 5  | Разделительное давление                       |             | 720 кПа    |
| 6  | Давление в конденсаторе                       |             | 0,272 MΠa  |
| 7  | Давление в конденсаторе                       |             | 4,5 кПа    |
| 8  | Мощность теплофикационной установки           |             | 60 ГДЖ/час |
| 9  | Температура воды промконтура на входе в ТФУ   |             | 80°C       |
| 10 | Температура воды промконтура на выходе из ТФУ |             | 140 °C     |
| 11 | Тип реактора                                  | РБМК        |            |

#### Этапы расчета курсового проекта

- Выбор расчётной схемы, определение числа подогревателей низкого давления
- Расчёт напоров конденсатных и питательных насосов
- Определение параметров греющей среды в подогревателях и отборах турбины
- Построение процесса расширения пара в НЅ диаграмме
- Определение потоков пара и воды в элементах тепловой схемы
- Расчёт показателей тепловой экономичности машинного зала
- Расчёт показателей тепловой экономичности АЭС

#### Определение принципиальной расчётной схемы

Была принята схема слива конденсата греющего пара с одним дренажным насосом на ПНД1, охладитель дренажа размещен только перед ПНД2. Схема состоит из трех ПНД. Приняты следующие подогревы:

- на подогревателях низкого давления  $\Delta t_{\Pi H J} = 27,91~^{\circ}{
  m C}$
- на деаэраторе  $t_{\rm Д} = 13,96~{\rm ^{\circ}C}$

ТФУ состоит из одного пикового и двух основных бойлеров с одинаковыми подогревами  $t_{\rm B}=20~{}^{\circ}{\rm C}$ 

#### Напоры конденсатных и питательных насосов

Напор на конденсатных насосах первого подъема:

 $\Delta p_{\rm KH1} = 560 \, {\rm к} \Pi {\rm a}$ 

Напор на конденсатных насосах второго подъема:

 $\Delta p_{\rm KH2} = 1477,5 \ {
m k}\Pi {
m a}$ 

Суммарный перепад на конденсатных насосах:

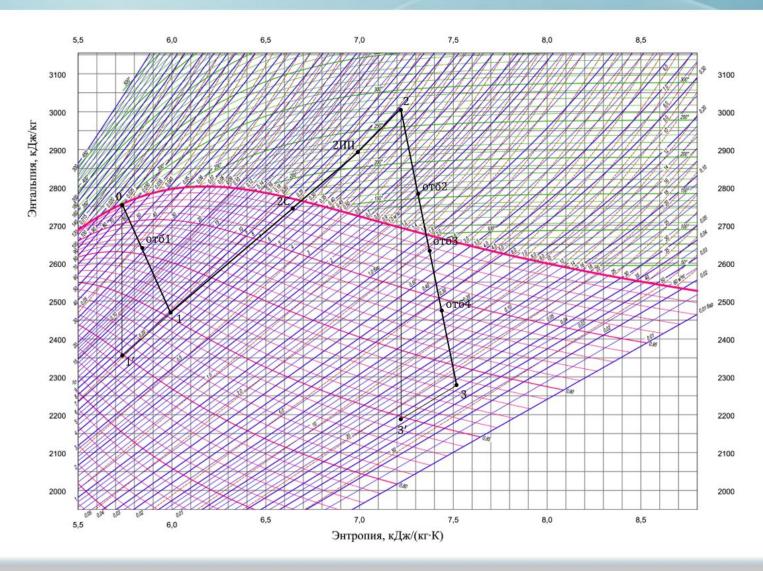
 $\Delta p_{\rm KH} = 2037,5 \ {
m k}\Pi {
m a}$ 

Напор на питательных насосах:

 $\Delta p_{\Pi H} = 8,46 \text{ M}\Pi a$ 

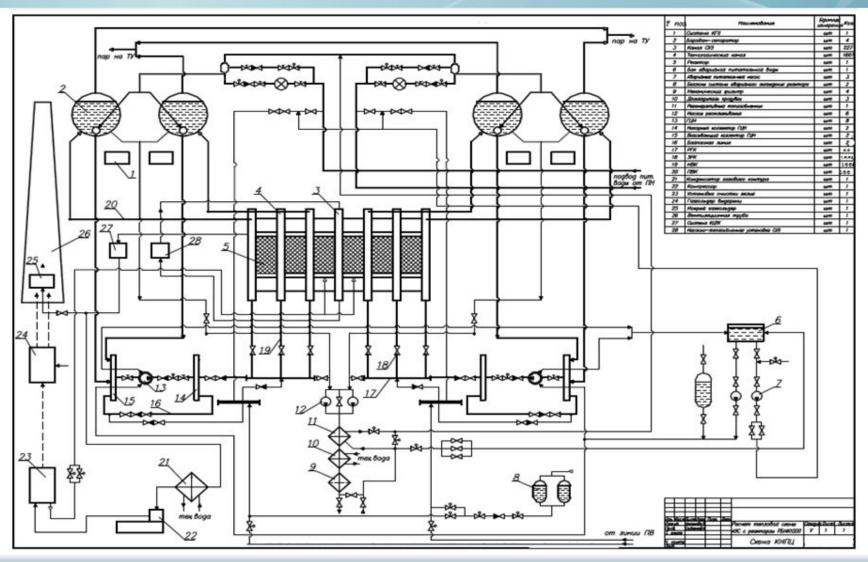
## Параметры греющей среды в подогревателях

| ПНД1                  |  |  |  |
|-----------------------|--|--|--|
| ПНД1<br>ПНД2(ОД2<br>) |  |  |  |
| ПНД3                  |  |  |  |
| ПП1                   |  |  |  |

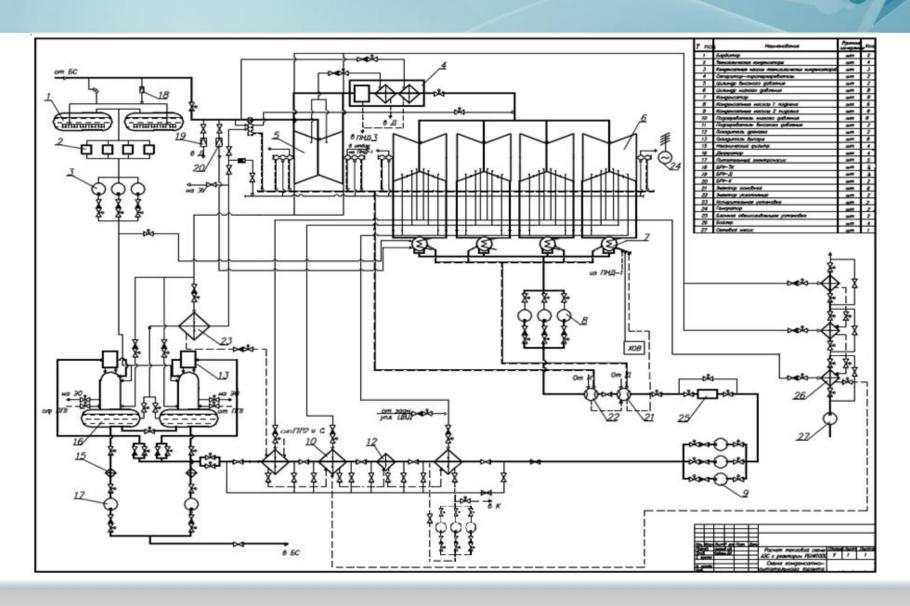

⋆ – с учетом охлаждения в ОД на 5 °C

# Параметры точек и отборов для построения HS диаграммы

| Точка |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |


| № отбора |  |  |
|----------|--|--|
| 1        |  |  |
| 2        |  |  |
| 3        |  |  |
| 4        |  |  |

# Процесс расширения пара в HS диаграмме (с отборами)




### Развернутая схема КМПЦ





#### Развернутая схема конденсатно-питательного тракта



# Расходы пара и воды



| Расход | Значение, кг/с |
|--------|----------------|--------|----------------|--------|----------------|--------|----------------|
|        |                |        |                |        |                |        |                |
|        |                |        |                |        |                |        |                |
|        |                |        |                |        |                |        |                |
|        |                |        |                |        |                |        |                |
|        |                |        |                |        |                |        |                |
|        |                |        |                |        |                |        |                |
|        |                |        |                |        |                |        |                |
|        |                |        |                |        |                |        |                |
|        |                |        |                |        |                |        |                |
|        |                |        |                |        |                |        |                |
|        |                |        |                |        |                |        |                |

#### Показатели тепловой экономичности для машинного зала

• Электрический КПД брутто турбоустановки:

$$\eta_{\rm Э, 6рутто} = 33,77 \%$$

• Электрический КПД нетто турбоустановки:

$$\eta_{\rm 3, HeTTO} = 33,06 \%$$

# Показатели тепловой экономичности для АЭС

• Электрический КПД брутто энергоблока:

$$\eta_{\rm CT, 6pyrro} = 32,18 \%$$

• Электрический КПД нетто энергоблока:

$$\eta_{\rm CT, HeTTO} = 30.85 \%$$

# Спасибо за внимание!