Передача сигналов через линейные системы

Лекции по курсу «Электроника систем регистрации элементарных частиц»

Жуланов Владимир Викторович

тел. 329-47-32

e-mail: zhulanov@inp.nsk.su

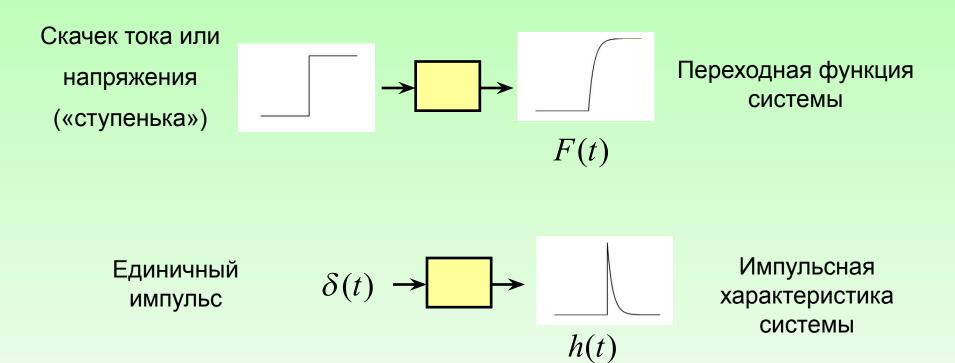
2.1 Линейная передающая система

— <u>линейная передающая система</u>

$$f_{\text{in}}(t) \rightarrow f_{\text{out}}(t)$$
 $g_{\text{in}}(t) \rightarrow g_{\text{out}}(t)$

$$af_{\text{in}}(t) + bg_{\text{in}}(t) \rightarrow af_{\text{out}}(t) + bg_{\text{out}}(t)$$

Тестовые сигналы



Свойства линейных систем

Физическая реализуемость. Если входное воздействие возникает в момент времени 0, то импульсная характеристика и переходная функции равны 0 при t < 0:

$$v_{in}(t) = 0$$
, при $t < 0 \Longrightarrow h(t) = 0, F(t) = 0$ при $t < 0$

Устойчивость. Система со временем «забывает» о входном воздействии:

$$\lim_{t\to +\infty}h(t)=0$$

Свойство стационарных линейных систем:

$$f_{\text{in}}(t) \rightarrow f_{\text{out}}(t)$$
 $f_{\text{in}}(t-t_1) \rightarrow f_{\text{out}}(t-t_1)$

Связь импульсной характеристики и переходной функции

Входной сигнал

$v_{\text{BX1}}(t) = \frac{1}{\Lambda t}, t \ge 0$ $v_{\text{BX2}}(t) = -\frac{1}{\Lambda t}, t \ge \Delta t$ $v_{\text{BX}}(t) = v_{\text{BX}1}(t) + v_{\text{BX}}(t)$ $v_{\text{BX}}(t) = \frac{1}{\Delta t}, t \in [0, \Delta t]$ $v_{\text{\tiny PLIV}} \to \delta(t)$

Выходной сигнал

$$v_{\text{вых1}} = \frac{1}{\Lambda t} F(t)$$

$$v_{\text{\tiny BbIX2}} = \frac{-1}{\Delta t} F(t - \Delta t)$$

$$v_{\text{\tiny BMX}} = v_{\text{\tiny BMX1}} + v_{\text{\tiny BMX2}} = \frac{F(t) - F(t - \Delta t)}{\Delta t}$$

$$v_{\text{\tiny BLIV}} \to F'(t)$$

To есть
$$h(t) = F'(t)$$

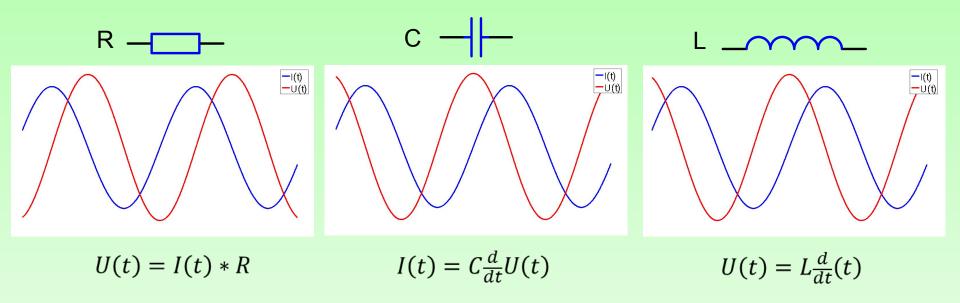
2.2 Классический метод расчета реакции линейной системы на входное воздействие

$$i(t)R + L\frac{di(t)}{dt} + \frac{1}{C}\int i(t)dt = V(t)$$

$$R\frac{di(t)}{dt} + L\frac{d^{2}i(t)}{dt^{2}} + \frac{1}{C}i(t) = \frac{dV(t)}{dt}$$

Ввиду своей сложности, метод непригоден для ручного расчета сложных схем

Метод интеграла Фурье



$$U(t) = U_0 \cos \omega t = U_0 Re[e^{j\omega t}] \Rightarrow \dot{U}$$

$$I(t) = I_0 \cos \omega t = I_0 Re[e^{j\omega t}] \Rightarrow \dot{I}$$

 представление тока и напряжения в комплексном виде

Закон Ома в комплексном виде

$$\vec{X} = R$$

$$\vec{U} = \dot{X}\dot{I}$$

$$\vec{J} = \frac{1}{j\omega C}$$

$$\vec{X} = j\omega L$$

$$\dot{U} = \dot{X}\dot{I}$$

$$\dot{X} = \mu \Delta D$$

Решение уравнения электрической цепи в комплексном виде

$$I(t)R + L\frac{d}{dt}I(t) + \frac{1}{C}\int I(t)dt = U(t) \Rightarrow$$
 $\dot{U} = \dot{I}R + \dot{I}\dot{X}_L + \dot{I}\dot{X}_C = \dot{I}(R + \dot{X}_L + \dot{X}_C)$
 $\dot{I} = \frac{1}{R + \dot{X}_L + \dot{X}_C}\dot{U}$
 $I(t) = Re[\frac{1}{R + \dot{X}_L + \dot{X}_C}U_0e^{j\omega t + \varphi_0}]$ - решение для $I(t)$ на одной гармонике (частоте)

Для произвольного сигнала U(t) требуется преобразование Фурье – разложение сигнала на гармоники

Для восстановления I(t) из набора его гармоник (спектра) требуется обратное преобразование Фурье

$$f_{\text{in}}(t) \rightarrow \int_{\text{out}} f_{\text{out}}(t)$$

$$\stackrel{\nearrow}{\mathbb{A}_{\text{in}}}(\omega) \rightarrow \stackrel{\nearrow}{\mathbb{A}_{\text{out}}}(\omega) = \stackrel{\nearrow}{\mathbb{A}}(\omega) \stackrel{\nearrow}{\mathbb{A}_{\text{in}}}(\omega)$$

 $\dot{K}(\omega)$ — комплексный коэффициент преобразования линейной системы

$$\mathbb{A}_{\mathrm{in}}(\omega) = \int_{-\infty}^{+\infty} f_{\mathrm{in}}(t) e^{-j\omega t}$$

$$f_{\text{out}}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathbb{A}(\omega) \mathbb{A}_{\text{in}}(\omega) e^{j\omega t} d\omega$$

$$V_1(\omega) \rightarrow K_{12} \rightarrow V_2(\omega) \rightarrow K_{23} \rightarrow V_3(\omega)$$

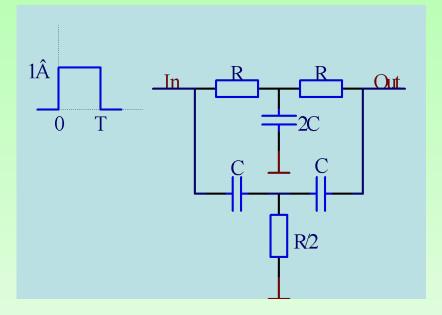
$$\mathbb{P}_{3}(\omega) = \mathbb{P}_{2}(\omega) \mathbb{R}_{23}(\omega) = (\mathbb{P}_{1}(\omega) \mathbb{R}_{12}(\omega)) \mathbb{R}_{23}(\omega) =$$

$$= \mathbb{P}_{1}(\omega) (\mathbb{R}_{12}(\omega) \mathbb{R}_{23}(\omega)) = \mathbb{P}_{1}(\omega) \mathbb{R}_{13}(\omega)$$

$$\mathbb{R}_{13}(\omega) = \mathbb{R}_{12}(\omega) \mathbb{R}_{23}(\omega)$$

$$V_{1}(\omega) \longrightarrow K_{13} \longrightarrow V_{3}(\omega)$$

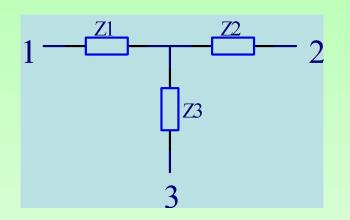
Пример расчета фильтра методом Фурье

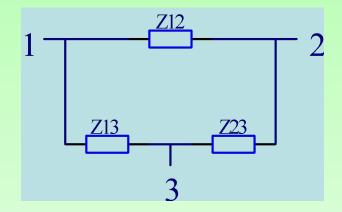


$$v_{ ext{in}}(t) = \left\{ egin{array}{l} 0, t < 0 \ 1, t \in (0, T) \ 0, t > T \end{array}
ight. \ \dot{V}_{ ext{in}}(\omega) = rac{1 - e^{-j\omega T}}{j\omega} \end{array}
ight.$$

$$\dot{V}_{\rm in}(\omega) = \int_{-\infty}^{+\infty} v_{\rm in}(t)e^{-j\omega t}dt = \int_{0}^{T} e^{-j\omega t}dt$$

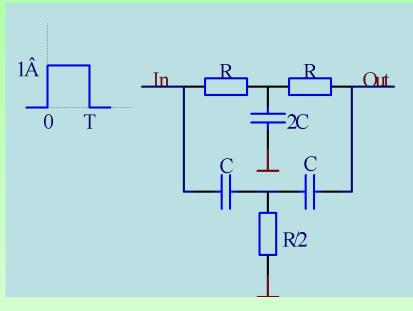
Преобразование «треугольник—звезда»

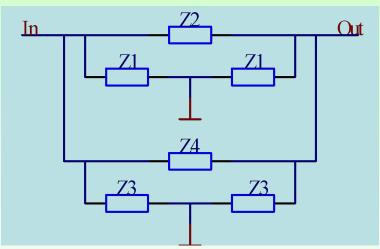




$$Z_{1} = \frac{Z_{12}Z_{13}}{Z_{12} + Z_{13} + Z_{23}}; Z_{2} = \frac{Z_{12}Z_{23}}{Z_{12} + Z_{13} + Z_{23}}; Z_{3} = \frac{Z_{13}Z_{23}}{Z_{12} + Z_{13} + Z_{23}}$$

$$Z_{12} = \frac{Z_{1}Z_{2} + Z_{1}Z_{3} + Z_{2}Z_{3}}{Z_{3}}; Z_{13} = \frac{Z_{1}Z_{2} + Z_{1}Z_{3} + Z_{2}Z_{3}}{Z_{2}}; Z_{23} = \frac{Z_{1}Z_{2} + Z_{1}Z_{3} + Z_{2}Z_{3}}{Z_{1}}$$



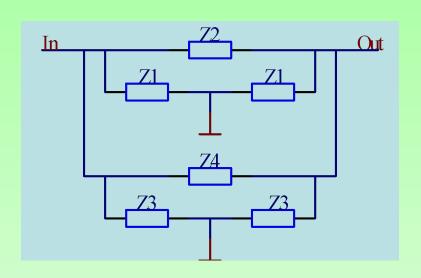


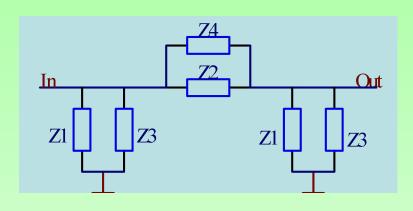
$$\mathbb{Z}_{1} = \frac{R\mathbb{X}/2 + R\mathbb{X}/2 + R\mathbb{X}/2 + R^{2}}{R} = R + \mathbb{X}$$

$$\mathbb{Z}_{2} = \frac{R\mathbb{X}/2 + R\mathbb{X}/2 + R^{2}}{\mathbb{X}/2} = 2\frac{R}{\mathbb{X}}(R + \mathbb{X})$$

$$\mathbb{Z}_{3} = \frac{\mathbb{X}R/2 + \mathbb{X}R/2 + \mathbb{X}^{2}}{\mathbb{X}} = R + \mathbb{X}$$

$$\mathbb{Z}_{4} = \frac{\mathbb{X}R/2 + \mathbb{X}R/2 + \mathbb{X}^{2}}{R/2} = 2\frac{\mathbb{X}}{R}(R + \mathbb{X})$$

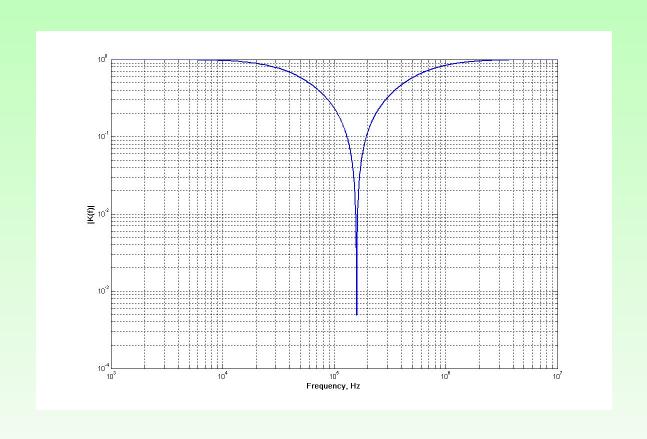




$$\mathbb{R}(\omega) = \frac{\left\langle \mathbb{Z}_{1} \middle| \mathbb{Z}_{3} \right\rangle}{\left\langle \mathbb{Z}_{1} \middle| \mathbb{Z}_{3} \right\rangle + \left\langle \mathbb{Z}_{2} \middle| \mathbb{Z}_{4} \right\rangle} = \frac{(R + \mathbb{Z})/2}{(R + \mathbb{Z})/2 + 2\frac{\frac{R}{\mathbb{Z}} \frac{\mathbb{Z}}{R}}{\frac{R}{\mathbb{Z}} + \frac{\mathbb{Z}}{R}} (R + \mathbb{Z})} = \frac{1}{1 + 4\frac{R\mathbb{Z}}{R^{2} + \mathbb{Z}^{2}}} = \frac{R^{2} + \mathbb{Z}^{2}}{R^{2} + 4R\mathbb{Z} + \mathbb{Z}^{2}}$$

$$\mathbb{R}(\omega) = \frac{1 + (j\omega\tau)^2}{1 + 4j\omega\tau + (j\omega\tau)^2}$$
, где $\tau = RC$

Передаточная функция

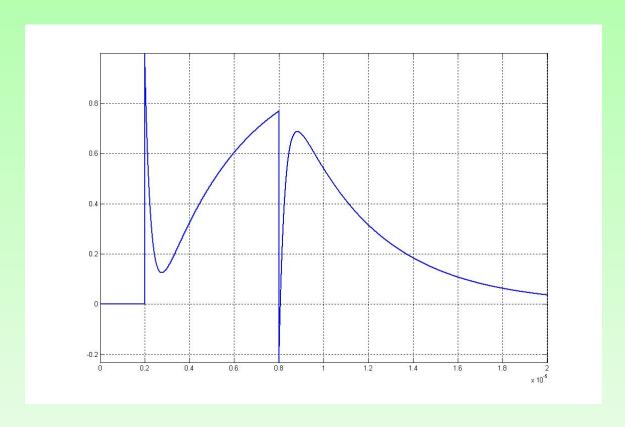


$$V_{\text{out}}(\omega) = V_{\text{in}}(\omega) R(\omega) = \frac{1 - e^{-j\omega t}}{j\omega} \frac{1 + (j\omega\tau)^{2}}{1 + 4j\omega\tau + (j\omega\tau)^{2}}$$

$$v_{\text{out}}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1 - e^{-j\omega T}}{j\omega} \frac{1 + (j\omega\tau)^{2}}{1 + 4j\omega\tau + (j\omega\tau)^{2}} e^{j\omega t} d\omega = v_{\text{in}}(t) - \frac{2\tau}{\pi} (I_{1} - I_{2})$$

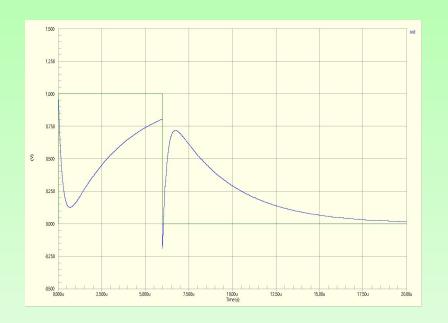
$$I_{1} = \int_{-\infty}^{+\infty} \frac{e^{j\omega t}}{1 + 4j\omega\tau + (j\omega\tau)^{2}} d\omega; I_{2} = \int_{-\infty}^{+\infty} \frac{e^{j\omega(t-T)}}{1 + 4j\omega\tau + (j\omega\tau)^{2}} d\omega$$

$$\begin{split} \omega_1 &= j \frac{2+\sqrt{3}}{\tau}, \omega_2 = j \frac{2-\sqrt{3}}{\tau} - \text{ два полюса подинтегральной функции} \\ I_1(t) &= \begin{cases} 2\pi j (\underset{\omega=\omega_1}{\operatorname{res}} \frac{e^{j\omega t}}{1+4j\omega t+(j\omega t)^2} + \underset{\omega=\omega_2}{\operatorname{res}} \frac{e^{j\omega t}}{1+4j\omega t+(j\omega t)^2}), & \text{если } t > 0 \\ 0, & \text{если } t < 0 \end{cases} \\ 2\pi j \underset{\omega=\omega_1}{\operatorname{res}} \frac{e^{j\omega t}}{1+4j\omega t+(j\omega t)^2} &= 2\pi j \frac{\omega-\omega_1}{(j\tau(\omega-\omega_1))(j\tau(\omega-\omega_2))} e^{j\omega t}|_{\omega=\omega_1} = -\frac{\pi}{\sqrt{3}\tau} e^{-t(2+\sqrt{3})/\tau} \\ 2\pi j \underset{\omega=\omega_2}{\operatorname{res}} \frac{e^{j\omega t}}{1+4j\omega t+(j\omega t)^2} &= 2\pi j \frac{\omega-\omega_2}{(j\tau(\omega-\omega_1))(j\tau(\omega-\omega_2))} e^{j\omega t}|_{\omega=\omega_2} = \frac{\pi}{\sqrt{3}\tau} e^{-t(2-\sqrt{3})/\tau} \\ I_1(t) &= \begin{cases} \frac{\pi}{\sqrt{3}\tau} (e^{-t(2-\sqrt{3})/\tau} - e^{-t(2+\sqrt{3})/\tau}) = \frac{2\pi}{\sqrt{3}\tau} e^{-2t/\tau} \operatorname{sh}(\sqrt{3}t/\tau), & \operatorname{если } t > 0 \\ 0, & \operatorname{если } t < 0 \end{cases} \\ I_2(t) &= \begin{cases} \frac{2\pi}{\sqrt{3}\tau} e^{-2(t-T)/\tau} \operatorname{sh}(\sqrt{3}(t-T)/\tau), & \operatorname{если } t > T \\ 0, & \operatorname{если } t < T \end{cases} \\ v_{\mathrm{out}}(t) &= \begin{cases} 0, & t < 0 \\ 1 - \frac{4}{\sqrt{3}} e^{-2t/\tau} \operatorname{sh}(\sqrt{3}t/\tau), & \operatorname{если } t \in (0,T) \\ \frac{4}{\sqrt{3}} e^{-2(t-T)/\tau} \operatorname{sh}(\sqrt{3}(t-T)/\tau) - \frac{4}{\sqrt{3}} e^{-2t/\tau} \operatorname{sh}(\sqrt{3}t/\tau), & \operatorname{если } t > T \end{cases} \end{split}$$



Результат вычислений для: R=300 Ом, C=3.3 нФ, т=1мкс, T=6 мкс

Моделирование, реальное измерение

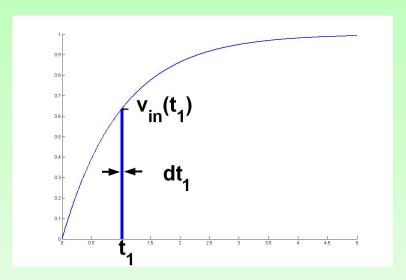


Моделирование

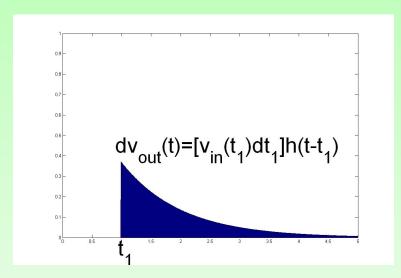
Реальное измерение

2.4 Интеграл суперпозиции

Разобьем входной сигнал на маленькие части. Найдем реакцию на каждую часть. Сложим реакции—получим выходной сигнал



Входной сигнал



Реакция системы на отдельную часть

$$v_{
m out}\left(t_{2}
ight)=\int\limits_{-\infty}^{t_{2}}v_{
m in}\left(t_{1}
ight)h(t_{2}-t_{1})dt_{1}$$
— интеграл суперпозиции

Меняя пределы интегрирования можно получить другую формы записи:

$$v_{
m out}(t) = \int\limits_0^{+\infty} h(au) v_{
m in}(t- au) d au$$
, если ввести время памяти системы $au = t_2 - t_1$ $v_{
m out}(t) = \int\limits_{-\infty}^t v_{
m in}(au) h(t- au) d au = \int\limits_{-\infty}^{+\infty} v_{
m in}(au) h(t- au) d au = v_{
m in}(t) \otimes h(t)$ $v_{
m i}(t_{
m i}) h(t_{
m in}(t_{
m in}) h(t_{
m in}(t_{
m in}$

Передача сигналов через линейные системы

$$f_1(t) \rightarrow h_{12} \rightarrow f_2(t) \rightarrow h_{23} \rightarrow f_3(t)$$

$$f_{2}(t) = f_{1}(t) \otimes h_{12}(t); \quad f_{3}(t) = f_{2}(t) \otimes h_{23}(t)$$

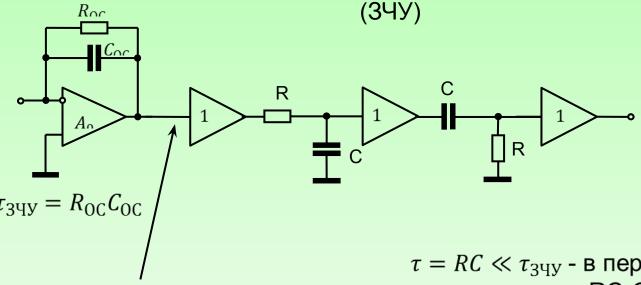
$$f_{3}(t) = (f_{1}(t) \otimes h_{12}(t)) \otimes h_{23}(t) = f_{1}(t) \otimes (h_{12}(t) \otimes h_{23}(t)) = f_{1}(t) \otimes h_{13}(t)$$

$$h_{13}(t) = h_{12}(t) \otimes h_{23}(t)$$

$$f_1(t) \longrightarrow h_{13} \longrightarrow f_3(t)$$

RC-CR фильтр

Задача: рассчитать реакцию фильтра RC-CR на сигнал с зарядо-чувствительного усилителя



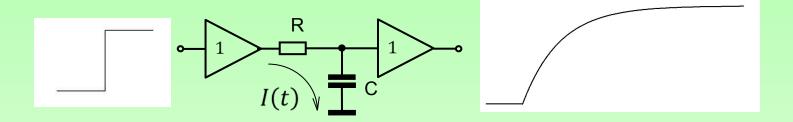
$$A = \frac{1}{C_{\text{OC}}} Q_{\text{BX}}$$

$$\tau_{3\text{YY}} = R_{\text{OC}} C_{\text{OC}}$$

 $au = RC \ll au_{3
m Hy}$ - в первом приближении на входе RC-CR фильтра прямоугольный импульс напряжения

Реакция на такой сигнал – переходная функция линейной системы

RC-фильтр (интегратор)



$$V_{\rm BX}(t) = 0, t < 0$$

$$I(t) = 0, t < 0$$

$$V_{\rm BHX}(t) = 0, t < 0$$

$$V_{\rm BX}(t) = V_0 = 1 \, {\rm B}, t \ge 0$$

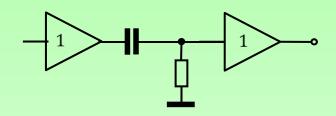
$$V_{\rm BX}(t) = RI(t) + \frac{1}{C} \int_{-\infty}^{t} I(t')dt'$$

$$0 = R\frac{d}{dt}I(t) + \frac{1}{C}I(t)$$

$$I(t) = I_0 e^{-t/\tau} = \frac{V_0}{R} e^{-t/\tau}$$

$$V_{\text{BMX}} = \frac{1}{C} \int_{-\infty}^{t} I(t')dt' = \frac{V_0}{RC} \int_{-\infty}^{t} e^{-t/\tau}dt' = V_C - V_0 e^{-\frac{t}{\tau}} = V_0 \left(1 - e^{-\frac{t}{\tau}}\right)$$

RC-фильтр (дифференциатор)



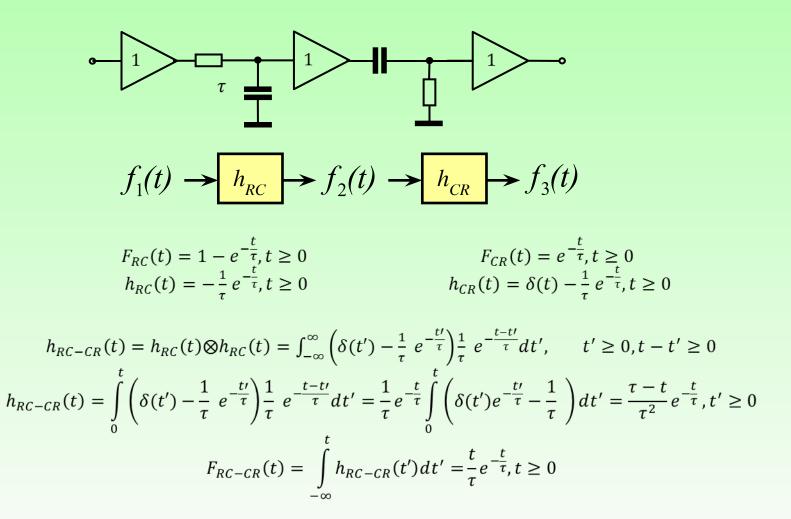
$$V_{\rm BX}(t) = 0, t < 0$$

$$I(t) = 0, t < 0$$

$$V_{\text{BMX}}(t) = 0, t < 0$$

$$\begin{split} V_{\text{BX}}(t) &= V_0 = 1 \text{B}, t \geq 0 \\ V_{\text{BX}}(t) &= RI(t) + \frac{1}{C} \int_{-\infty}^{t} I(t') dt' \\ 0 &= R \frac{d}{dt} I(t) + \frac{1}{C} I(t) \\ I(t) &= I_0 e^{-t/\tau} = \frac{V_0}{R} e^{-t/\tau} \\ V_{\text{BMX}} &= RI(t) = R \frac{V_0}{R} e^{-t/\tau} = V_0 e^{-t/\tau} \end{split}$$

RC-CR фильтр



Устойчивость

Линейная система устойчива, если для любого входного сигнала, конечной энергии, энергия выходного сигнала тоже конечна

$$|v_{\text{out}}(t)|^2 = \int_{-\infty}^{+\infty} |v_{\text{in}}(\tau)h(t-\tau)|^2 d\tau \le \int_{-\infty}^{+\infty} |v_{\text{in}}(t)|^2 dt \int_{-\infty}^{+\infty} |h(\tau)|^2 d\tau$$

$$\int_{-\infty}^{+\infty} \left| v_{\text{in}}(t) \right|^2 dt < +\infty, \int_{-\infty}^{+\infty} \left| h(\tau) \right|^2 < +\infty \Rightarrow \left| v_{\text{out}}(t) \right|^2 < +\infty$$

Если импульсная характеристика линейной системы абсолютно интегрируема, то система устойчива

2.5. Интеграл суперпозиции как корреляционная операция

$$m(t) = h(-t)$$
 — Функция памяти

$$v_{\text{out}}(t) = \int_{-\infty}^{t} v_{\text{in}}(\tau) m(\tau - t) d\tau = \psi_{1m}(t)$$

Линейная система является коррелятором прошлого входного сигнала и функции памяти системы

Резюме

- •Линейная система. Свойства линейной системы
- •Методы описания линейной системы
- •Методы расчета линейных систем. Классический метод, интеграл Фурье, метод интеграла суперпозиции