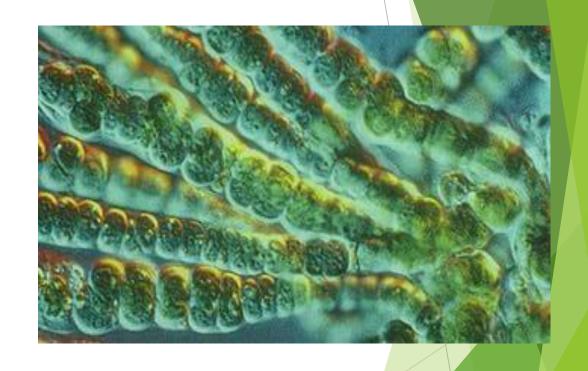
Презентация на тему: «Морозоустойчивость растений.»


Выполнил: Полевой К.А

Действие экстремальных температур на растения

В ходе эволюции растения довольно хорошо адаптировались к воздействию низких и высоких температур. Однако эти приспособления не столь совершенны, поэтому крайние экстремальные температуры могут вызвать те или иные повреждения и даже гибель растения. Диапазон температур, действующих в природе на растения, достаточно широк: от −77°C до + 55°C, т.е. составляет 132°C. Наиболее благоприятными для жизни большинства наземных организмов являются температуры +15 - +30°C.

Высокие температуры

Жаростойкие - главным образом низшие растения, например, термофильные бактерии и сине-зеленые водоросли.
Эта группа организмов способна выдерживать повышение температуры до 75-90°C;

Влияние на растения низких температур

Устойчивость растений к низким температурам подразделяют на:

- Холодостойкость;
- Морозоустойчивость.

Холодостойкость растений

способность теплолюбивых растений переносить низкие положительные Теплолюбивые температуры. растения страдают при сильно положительных пониженных Внешними температурах. растений страдания симптомами увядание листьев, являются появление некротических пятен.

Морозоустойчивость

способность растений переносить отрицательные температуры. Двулетние и многолетние растения, растущие в умеренной полосе, периодически подвергаются воздействию низких отрицательных температур. Разные растения обладают неодинаковой устойчивостью к этому воздействию.

Морозоустойчивые растения

Цинерария

Мак

Влияние на растения низких температур

- При быстром понижении температуры образование льда происходит внутри клетки При постепенном снижении температуры кристаллы льда образуются в первую очередь в межклетниках. Гибель клетки и организма в целом может происходить в результате того, что образовавшиеся в межклетниках кристаллы льда, оттягивая воду из клетки, вызывают ее обезвоживание и одновременно оказывают на механическое давление, повреждающее цитоплазму клеточные структуры. Это вызывает ряд последствий потерю тургора, повышение концентрации клеточного сока, резкое уменьшение объема клеток, сдвиг значений рН в неблагоприятную сторону.

Влияние на растения низких температур

Плазмалемма теряет полупроницаемость. Нарушается работа ферментов, локализованных на мембранах хлоропластов и митохондрий, и связанные с ними процессы окислительного и фотосинтетического фосфорилирования. Интенсивность фотосинтеза снижается, уменьшается отток ассимилятов. Именно изменение свойств мембран является первой причиной повреждения клеток. В некоторых случаях повреждение мембран наступает при оттаивании. Таким образом, если клетка не прошла процесса закаливания, цитоплазма свертывается из-за совместного влияния обезвоживания и механического давления образовавшихся в межклетниках кристаллов льда.

Адаптации растений к отрицательным температурам

Существуют два типа приспособлений к действию отрицательных температур:

- уход от повреждающего действия фактора (пассивная адаптация)
- повышение выживаемости (активная адаптация).

Адаптации растений к отрицательным температурам

- Уход от повреждающего действия низких температур достигается, прежде всего, за счет короткого онтогенеза это уход во времени. У однолетних растений жизненный цикл заканчивается до наступления отрицательных температур. Эти растения до наступления осенних холодов успевают дать семена.
- ► Большая часть многолетников теряет свои надземные органы и перезимовывает в виде луковиц, клубней или корневищ, хорошо защищенных от мороза слоем почвы и снега это *уход в пространстве* от повреждающего действия низких температур.

Зимний покой

приспособительное свойство многолетнего растения, для которого время зимнее характерно прекращение видимого роста И жизнедеятельности (отмирание надземных побегов у травянистых и опадение листьев у древесных И кустарниковых растений)

Стратификация

процесс имитации влияния природных зимних условий на семена растений, чтобы семенам было легче всходить, а также меры по ускорению прорастания семян и повышению ИХ всхожести, посадкой. применяемые перед Часто включают искусственное длительное выдерживание семян определённой при пониженной температуре.

Яровизация

физиологическая реакция растений на охлаждение, вызванная адаптацией к сезонным изменениям умеренного климата. Для цветения и образования семян эти растения должны быть подвергнуты воздействию низких положительных температур. Яровизация присуща некоторым двулетним и многолетним растениям, в частности, злакам, корнеплодам.

Зимостойкость

способность растений переносить без повреждений неблагоприятные зимние условия:

выпревание, выпирание, вымокание, обледенение.

Закаливание

▶ это обратимое физиологическое приспособление к неблагоприятным воздействиям, происходящее под влиянием определенных внешних условий, относится к активной адаптации.

Процессы закалки

В результате процесса закаливания
морозоустойчивость организма резко повышается.
Способностью к закаливанию обладают не все
растительные организмы, она зависит от вида
растения, его происхождения. Растения южного
происхождения к закаливанию не способны. У
растений северных широт процесс закаливания
приурочен лишь к определенным этапам развития.

Закаливание

- Закаливание растений проходит в две фазы
- ▶ Первая фаза закаливания проходит на свету при несколько пониженных плюсовых температурах (днем около 10°С, ночью около 2°С) и умеренной влажности. В эту фазу продолжается дальнейшее замедление, и даже полная остановка ростовых процессов.
- **Вторая фаза** закаливания протекает при дальнейшем понижении температуры (около 0°С) и не требует света. В связи с этим для травянистых растений она может протекать и под снегом. В эту фазу происходит отток воды из клеток, а также перестройка структуры протопласта.

Изнеживания растений

Весеннее снижение морозостойкости (потеря закалки) обусловлено процессом, обратным закалке, — изнеживанием, вызываемым теплыми днями (даже, например, среди зимы).

Список литературы

- Экологии растений, Н.А. Березина, Н.Б. Афанасьева.-М.: Издательский центр «Академия», 2009. -400 с.
- Миркин Б. М. Наука о растительности / Б. М. Миркин, Л.Г, Наумова. Уфа
 : Гилем, 1998. 413 с.
- Талах М. В. Горлачев В. Ю. Экология растений: курс лекций / М. В. Талах;
 В. Ю. Горлачев; КамГУ им. Витуса Беринга. Петропавловск-Камчатский: КамГУ им. Витуса Беринга, 2013. 184 с
- Динамика ценопопуляций травянистых растений / ред. К. А. Малиновский.
 К.: Наукова думка, 1987. 128 с

Спасибо за внимание!