Новая коронавирусная инфекция COVID-19

Мурзабаева Р.Т.,

кафедра инфекционных болезней с курсом ИДПО

Ответы по адресу: infipobgmu@yandex.ru

1.1. Актуальность, этиология и патогенез новой коронавирусной инфекции

Коронавирусная инфекция –

острая антропозоонозная вирусная инфекция с аэрозольным и фекальнооральным механизмом передачи возбудителя и протекает с поражением респираторного и пищеварительного тракта

Принятая терминология!!!

- SARS-CoV-2 официальное название вируса, утвержденное ICTV; (Международный комитет по таксономии вирусов 11.02.2020).
- COVID-19 официальное название заболевания, этиологически связанного с SARS-CoV-2, утвержденное ВОЗ (11.03.2020).

Новая коронавирусная инфекция (COVID-19) добавлена в перечень ООИ, представляющих опасность для окружающих, Постановлением Правительства РФ от 31.01.2020 г. № 66

Разработка и обновление временных MP по профилактике, диагностике и лечению COVID-19

Рабочая группа по разработке временных МР по профилактике, диагностике и лечению со∨ID-19 Приказ МЗ РФ №68 от 27.01.2020

Версия 1 МР

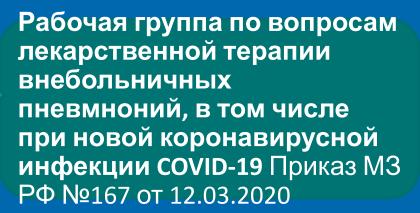
29.01.2020

Версия 2 МР

03.02.2020

Версия 8 МР

03.09.2020


Версия 9 МР

26.10.2020

Версия 10 МР

08.02.2021

Версия 11 МР от 7.05.2021

- Анализ данных российских и зарубежных исследований в области профилактики, диагностики и лечения коронавирусной инфекции, включая COVID-19, SARS и MERS;
- Мониториг и анализ рекомендаций международных организаций (BO3, ECDC и др.), зарубежных национальных институтов и агенств по проблеме COVID-19;
- Анализ эффективности противоэпидемических мероприятий, клинических данных, опыта дагностики и лечения в зарубежных странах;
- Подготовка и обновление временых

Возникновение и распространение новой коронавирусной инфекции COVID-19

Коронавирусы (*Coronaviridae*) – это большое семейство РНК-содержащих вирусов, способных инфицировать человека и некоторых животных

В настоящее время среди населения циркулируют 4 сезонных коронавируса (HCoV-229E, -OC43, -NL63 и -HKU1), круглогодично присутствуют в структуре ОРВИ, и вызывают поражение ВДП легкой и средней тяжести, и 2 высокопатогенных коронавируса – вирус ближневосточного респираторного синдрома (MERS) и COVID-19.

В 2002 г. коронавирус **SARS-CoV** из рода Betacoronavirus (резервуар – летучие мыши, промежуточный резервуар – циветты) впервые стал причиной развития эпидемии атипичной пневмонии (TOPC), в 37 странах зарегистрировано > 8000 больных, из них 774 умерло. С 2004 г. новых случаев не выявлено-летальность 9,7%

Появился коронавирус **MERS-CoV**, возбудитель ближневосточного респираторного синдрома (MERS). Циркулирует по н.в., до 2020 г. Зарегистрировано 866 летальных исходов, летальность **34,4%.**

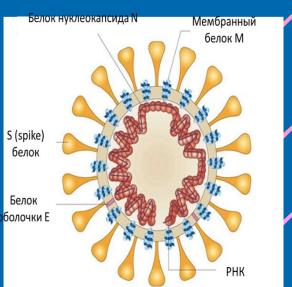
С декабря 2019 г. по март 2020 г. наиболее широкое распространение SARS-CoV-2 получил на территории КНР с эпицентром в провинции Хубэй (>80 тыс.чел.). В настоящее время основной источник инфекции- больной человек, находящийся и в инкубационном периоде заб-я.

Учитывая высокую патогенность, вирусы SARS-CoV, SARS-CoV-2 и MERS-CoV отнесены ко II группе патогенности.

Эпидемическая ситуация в разных странах крайне неоднородная. наибольшее число случаев инфицирования зарегистрировано в США и Бразилии (более 40%).

2002

2012


2040

2021

Эпидемиологическая ситуация COVID-19 на 05.09.2021

Страна	Количество заболевших	Количество умерших
В мире	220282354 / за сутки +460908	4561159 / за сутки 7458 летальность 2,07%
Россия	7.012599 / за сутки +18645	187200/ 793 за сутки, летальность 2,66%
Башкортостан	58562 / з а сутки +301	1187 / за сутки 12+, летальность 2,03%

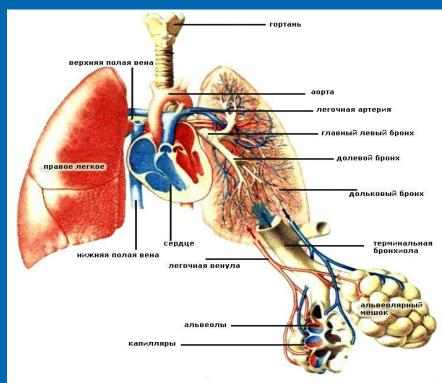

Строение и жизненный цикл вируса

SARS-CoV-2 – вирус с одноцепочечной РНК, к семейству Coronaviridae, роду Betacoronavirus. Генетическая последовательность SARSCoV-2 сходна с таковой SARS-CoV по меньшей мере на 79%.

Оболочка вириона имеет булавовидные отростки (S, spike), придающие вид короны вирусу, а также белки оболочки Е, мембран.М и нуклеокапсидный N белки;

С помощью S белка вирус взаимодействует с рецептором чувствительных клеток— ангиотензин - связывающим белком (ACE2) и проникает в клетки;

Появление мутаций является типичным для РНКсодержащих вирусов. Исходный штамм, выделенный от пациентов в Ухане в 12.2019 г., был отнесен к генетическому клайду L, в 01.2020 г. выделили клайд S, а затем - клайд О. Разделение вирусов SARS-CoV-2 на клайды не изменяли биологические свойства вируса (вирулентность, контагиозность, чувствительность к противовирусным препаратам)


Нет данных о связи выявленных мутаций в геноме SARS-CoV-2 с тяжестью и прогнозом течения COVID-19, их влияния на чувствительность и специфичность диагностических тест-систем и эффективность вакцин

Мутации SARS-CoV-2

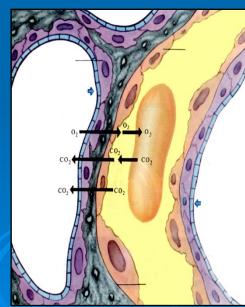
- Количество вариантов SARS-CoV-2 в настоящее время превышает 1000 различных генетический линий. Большинство мутаций SARS-CoV-2 не имеют функционального значения
- Исходя из распространенности различных вариантов вируса среди населения и данных об их биологических свойствах (контагиозность, патогенность, отношение к нейтрализуюдщей активности антител)
 ВОЗ предложила выделять варианты, представляющие обеспокоенность (VOC – variantof concern) и варианты, представляющие интерес (VOI – variantof interest).
- VOI широко распространены во многих странах мира, имеют мутации, которые потенциально способны изменить их биологические свойства, но доказательства этому в данный момент нет.
- VOC наряду с мутациями обладают биологическими свойствами, повышающими контагиозность, патогенность или снижающие нейтрализующую активность антител.
- Вариант дельта, получивший широкое распространение во многих странах мира и относящийся к VOC, несет в своем геноме мутации, повышающих контагиозность вируса, мутации, повышающие сродство S-белка вируса к АПФ-2 рецептору и понижающие узнаваемость вирусных постинфекцион. и поствакцинальными антителами.

Строение, функции легких

- □ Легочная ткань состоит из долек, в вершину каждой дольки входит бронх, он делится с образованием концевых бронхиол (18-20), переходит в ацинус.
- Ацинусы состоят из альвеолярных бронхиол, которые делятся на альвеолярные ходы, заканчивается двумя альвеолярными мешочками.
 - Альвеолы –полушаровидные выпячивания, состоят из соединительнотканных волокон. Выстланы слоем эпителиальных клеток и обильно оплетены кровеносными капиллярами
 - В альвеолах происходит газообмен между атмосферным воздухом и кровью. Кислород и углекислый газ, преодолевая диффузионный барьер (эпителий альвеол, базальная мембрана, стенка легочн. капилляра), проникают от эритроцита до альвеолы и наоборот

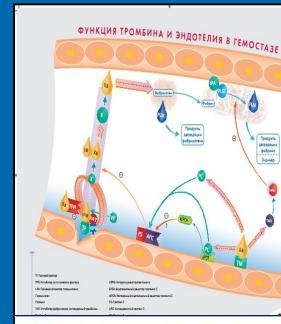
Клетки-мишени для SARS-CoV-2

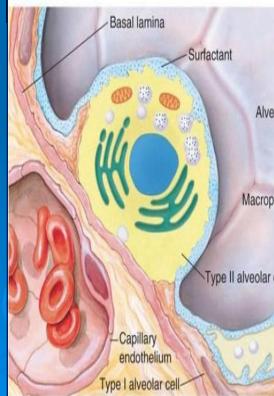
- □ Входные ворота вируса эпителий ВДП, желудка и кишечника.
- Клеточная трансмембранная сериновая протеаза типа 2 (ТСП2) способствует связыванию вируса с АСЕ-2, активируя его S-протеин, необходимый для проникновения SARS-CoV-2 в клетку
- Вирус обладает политропностью. Рецепторы АСЕ2 представлены на клетках-мишенях дыхательного тракта, почек, ЦНС, пищевода, желудка, тонкой и толстой кишки, сердца, эндотелиальных клетках артерий и вен, клетках гладкой мускулатуры артерий.
- □ Однако **основной и быстро достижимой мишенью** являются эпителиальные <u>клетки альвеол</u>, где вирус активно реплицируется, разрушает их, заражая новые клетки.
- □ Обсуждается возможность специфического поражения лимфоцитов с их апоптозом и пироптозом (возможно лежит в основе лимфопении, синдрома гиперактивности макрофагов).
- □ Учитывая способность SARS-CoV-2 поражать различные органы и ткани, обсуждается роль CD147 в инвазии клеток SARS-CoV-2.
- □ Диссеминация SARS-CoV-2 может привести к поражению головного мозга, привести к аносмии на ранней стадии заболевания


COVID-19 циклически протекающее инфекционное заболевание

- В течении инфекции выделяют <u>3 стадии</u>: ранней инфекции (виремии), легочной инфекции (фаза пневмонии), прогрессирования (гипервоспаления) или выздоровления
- При ведении пациента с COVID-19 чрезвычайно важно правильное определение
- 🗸 стадии заболевания и
- степени тяжести состояния пациента
- Именно эти 2 фактора определяют адекватную тактику ведения пациента в каждой конкретной стадии болезни
- Для этого необходимо в и/б вести учет дней болезни!

Характеристика первой стадии COVID-19


- Первая ст. COVID-19 длится 3–8 сут. в зависимости от степени тяжести заболевания и коморбидного статуса
- Происходит репликация РНК-вируса в цитоплазме пораженных клеток. Он доступен к действию ИКК- ЦТЛ и противовирусных препаратов
- □ <u>Около 80%</u> пациентов переносят этот период легко (в виде ОРВИ с поражением ВДП) или бессимптомно, вирусемия не >3-5 дней
- □ У 20% б-х вирус поражает эпителий НДП и альвеол, эндотелий легочных капилляров, вирусемия может длиться до 5-7 дней, далее развивается СВР.
- □ Повышается проницаемость мембран инфицированных клеток, выпотевает жидкость в просвет альвеол, интерстиций в легких, инактивируется сурфактант, ↓дыхательный объем альвеол. Нарастает СВР
- □ К 6-8 д/б (к началу 2 ст.) развивается ОДН и ↑ плотность легочной ткани (вирусный пневмонит), на КТфеномен «матового стекла»
- !Только в 1 ст. важна ПВТ (фавипиравир-коронавир, арепливир, авифавир; гидроксихлорохин при среднетяжелой форме, умифеновир, ИФН-α2в).



Характеристика 2 стадии болезни

- **У пациентов во 2-й стадии COVID-19**, которая длится 7 суток (8-15-25дней), развивается патологич-й ответ иммунной системы в виде цитокинового шторма.
- □ Вирус, токсины повреждают эндотелий сосудов МЦР, легочных капилляров, приводят к капилляростазу и плазморее и отечному синдрому.
- □ Дисфункция эндотелия **запускает ДВС** с тромбированием легочных капилляров и др. органов-мишеней сгустками фибрина, агрегатами тромбоцитов
- □ Параллельно развивается активная СВР, разрушение альвеоцитов ЦТЛ, выброс цитокинов (ИЛ-1,6, ФНО-α)лихорадка, нарастающая ДН (интерстициальный пневмонит), ↑ уровня СРБ, D-димера, ИЛ-6, ферритина (цитокиновый шторм!), а/б не эффективны.
- Развивается ОРДС, рестриктивная и диффузионная ДН, при которых ИВЛ мало эффективна!
- □! В этой стадии важна <u>упреждающая</u> <u>иммуносупрессивная и антикоагулянтная</u> терапия.
- □ При ОДН, помимо О₂-терапии при SpO2<92%, нужно введение белковых препаратов (альбумин, СЗП)

Острая дыхательная недостаточность

Рестриктивная, диффузионная ДН

- В норме кровоток осуществляется по тем капиллярам, которые омывают аэрируемые альвеолы. Величина физиолог.легочного шунта не > 2-3%.
- При <u>развитии пневмонии</u>и ОРДС наступает локальная гиповентиляция участка легких при N перфузии капил-в,
- на этом участке кровь не оксигенируется и развивается гипоксемия.
- При <u>ИТШ</u> нарушение МЦ в легочных капиллярах обусловливает неэффективность вентиляции легких
- Утолщение альвеолярно-капиллярной мембраны (отёк лёгких), возникает в результате пропотевания жидкой части крови в интерстиций и альвеолы (КВИ, грипп, уремия, ИМ, в/в инфузии).
- Клинически одышка, цианоз, ССН, крепитация, «снежная буря» в легких, О₂ мало эффективна

ОРДС

- ✓ Развивается на фоне чрезмерной, гиперергический СВР на данную инфекцию, гиперактивации ЦТЛ, продукции провоспалительных цитокинов (ФНО, ИЛ-1,ИЛ-6,ИЛ-8)
- ✓ ↑ капиллярной проницаемости
- Отек альвеолярно-капиллярных мембран, альвеол,↓ образования сурфактанта.
- ✓ Тяжелое диффузное альвеолярное повреждение синоним ОРДС.
- ✓ Признаки нарастающей легочной гипертензии: одышка, частое дыхание с дистанционными хрипами, тахикардия
- ✓ Резкая бледность кожных покровов, диффузный цианоз, потливость. Масса хрипов аускультативно, «снежная буря» в легких
- Рефрактерность к О2-терапии

Этапы развития COVID-19

- Пациенты с нормальной иммунной системой и адекватным иммунным ответом без факторов риска (пожилой возраст, коморбидные болезни) подавляют действие вируса в первой или второй стадии без чрезмерной иммунной реакции.
- Заболевание протекает в легкой или в среднетяжелой форме
- У больных с иммунной дисфункцией происходит сбой начальной фазы иммунного ответа и развивается чрезмерная СВР (цитокиновый шторм), что приводит к развитию прогрессирующего пневмонита, полиорганной дисфункции, распространенного тромбоваскулита и высокого риска смерти

Исходя из этого, лечение COVID-19 должно быть более адекватным между первой и второй фазой (в этом терапевтическом окне), когда наблюдается клиническое ухудшение с признаками нарастающей ДН и гиперкоагуляционного синдрома (лихорадка более 7 дней, кашель, одышка, снижение SpO2)

Характеристика 3-й стадии COVID-19

- **Третья стадия** COVID-19 наступает приблизительно **после 15-25 суток** с начала заболевания.
- Характеризуется выздоровлением пациента при благоприятном течении болезни или
- развитием осложнений при неблаго-приятном его течении (развитии гипервоспаления).
- Типичными для COVID-19 на фоне гипервоспаления являются нарастающая ДН, полиорганная дисфункция, инфекционные нозокомиальные и тромбоэмболические осложнения, обусловленные СВР, гипоксемией, тромбоваскулитом

- И обязательные направления лечения включают антикоагулянтную, антиагрегантную, реперфузионную терапию при тромбоэмболических осложнениях,
- антибактериальную при инфекционных осложнениях
- продолжение сдержанной иммуносупрессивной терапии с большим риском присоединения бактериального и грибкового сепсиса.

Поражение микроциркуляторного русла легких при COVID-19

- Вирусное и вызванное цитокиновым штормом повреждение эндотелия (SARS-CoV-2-ассоциированый эндотелиит) основа характерной для COVID-19 микроангиопатии преимущественно легких,
- □ реже других органов (миокарда, ГМ и др.), причем м. развиться локальный легочный или системный продуктивно —деструктивный тромбоваскулит.
- В 4 ковидных госпиталях проводилось п/а исследования, при этом выявлены:
- выраженное полнокровие капилляров межальвеолярных перегородок и ветвей легочных артерий и вен, сладж эритроцитов, свежие фибриновые и организующиеся тромбы;
- Внутрибронхиальные, бронхиолярные и интраальвеолярные кровоизлияния.

- ■Характерен альвеолярногеморрагический синдром до развития геморрагических инфарктов, тромбов сосудов легких, ТЭЛА
- □Описаны также тромбоз артерий с развитием инфарктов (миокарда, головного мозга, киш-ка, почек, селезенки), гангрена конечностей
- □Частота присоединения бактериальной или микотической суперинфекции не превышает 15-30%, чаще у больных при длительной ИВЛ.
- □В историях болезни указаний на данные суперинфекции не было

Морфологические изменения в легких

- В раннюю (экссудативную)
 стадию преобладают признаки
 внутриальвеолярного отека на фоне повреждения альвеол, плазмореи из легочных капилляров
- □ Гистологически внутриальвеолярный отек, гиалиновые мембраны, выстилающие контуры альвеол, десквамированный альвеолярный эпителий, в полостях альвеол - скопления фибрина, эритроцитов,
- в интерстиции воспаление с лимфоцитарной инфильтрацией
- □ В клетках эпителия трахеи и бронхов м.б. вирусные частицы. В легочных капиллярах - тромбы и агрегаты клеток.
- □ С противоотечной целью противовоспалительная терапия, назначается альбумин, СЗП

- В продуктивную (позднюю) стадию (с 8 д/б) в просвете альвеол, бронхиол организация экссудата (скопления сидерофагов), фибрин и
- □ облитерирующий бронхиолит с организующейся пневмонией, плоскоклеточная метаплазия альвеолярного эпителия.
- М.б. ателектазы, утолщение межальвеолярных перегородок за счет лимфоидной инфильтрации и пролиферации альвеолоцитов II типа
- □ Показана антикоагулятная, антиагрегатная, реперфузионная при тромбоэмболических, АБТ при инфекционных осложнениях.
- □ Т.о., патоморфологические процессы в легких в динамике определяют основные направления терапии пациентов COVID-19

Морфологические изменения в других органах

- Выявлены изменения и в других органах (помимо васкулита) на фоне генерализации коронавирусной инфекции (?): в кишечнике (катаральный и геморрагический гастроэнтероколит), головном мозге и мягкой мозговой оболочке (энцефалит и менингит), сердце (миокардит), поджелудочной железе, почках, селезенке.
- Весьма вероятны и прямые вирусные поражения плаценты, в ряде наблюдений показана возможность в/утробного инфицирования.
- Отмечены тяжелые поражения микроциркуляторного русла в связи с развитием своеобразной ДВС, наиболее выраженные в легких и почках.
- Описаны типичные для COVID-19 кожные проявления от геморрагического синдрома до высыпаний различного вида.
- □ На основании исследований аутопсийного материала с учетом клинической картины заболевания можно выделить следующие клинические и морфологические маски COVID-19: сердечную, мозговую, кишечную, почечную, печеночную, диабетическую, тромбоэмболическую (при ТЭЛА), септическую (при отсутствии бактериального, микотического сепсиса), микроангиопатическую (с системной микроангиопатией), кожную.

1. 2.Эпидемиологические аспекты COVID-19

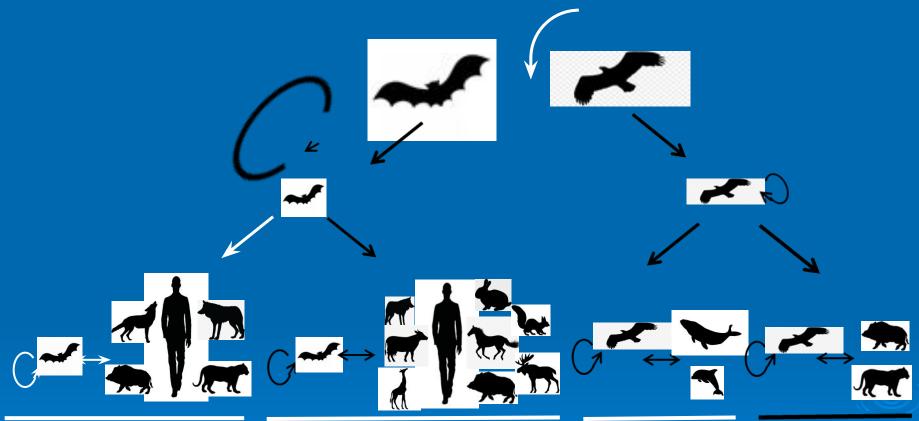
Эпидемическая ситуация

- □ Почти все страны мира серьезно пострадали от пандемии COVID-19, однако эпидемическая ситуация в разных странах крайне неоднородная.
- Высокий уровень заболеваемости и летальности отмечается в тех странах, где изоляционно-ограничительные мероприятия были введены с запозданием или в неполном объеме (Италия, Испания, США, Великобритания, Индия).
- □ Напротив, в странах, в которых противоэпидемические мероприятия были введены своевременно и в полном объеме (Сингапур, Южная Корея, Тайвань, Япония), наблюдается низкий уровень заболеваемости и летальности от COVID-19.

Резервуар инфекции

- До конца неизвестен (вероятно, дикие животные летучие мыши и змеи).
- SARS-CoV-2 является рекомбинантным вирусом между коронавирусом летучей мыши и коронавирусом неизвестного происхождения.
- □ По полученным итальянскими вирусологами данным и мнению Л.Монтанье, Нобелевского лауреата, новый химерный коронавирус был модифицирован в условиях лаборатории (в полном геноме вируса выявлена последовательность иного вируса секвенция ВИЧ) с целью производства вакцины от ВИЧ-инфекции.

Источник инфекции


- Больной человек (в инкубационном периоде, в разгар болезни). Наибольшую опасность для окружающих представляет больной человек в последние два дня инкубационного периода и первые дни болезни.
- Бессимптомный носитель SARS-CoV-2 с возможностью передачи от клинически здорового человека контактным лицам и, возможно, при длительном вирусоносительстве у реконвалесцентов из группы риска.
- Контагиозность: число инфицированных от одного источника RoCov-19 = 2-3-4

Устойчивость вируса

- При комнатной температуре (20-25°С) SARS-CoV-2 способен сохранять жизнеспособность на различных объектах окружающей среды в высушенном виде до 3 суток,в жидкой среде – до 7 суток.
- Вирус остается стабильным в широком диапазоне значений рН (до 6 дней при значении рНот 5 до 9 и до 2 дней при рН4 и рН11).
- При температуре +4°С стабильность вируса сохраняется более 14 дней.
- При нагревании до 37°C полная инактивация вируса происходит в течение1 дня, при 56°C - в течение 45 минут, при 70°C – в течение 5 минут.
- Вирус чувствителен к ультрафиолетовому облучению дозой не менее 25 мДж/см2 и действию различных дезинфицирующих средств в рабочей концентрации.

Схема циркуляции коронавирусов

(Щелканов М.Ю.,2020)

Lincage A, B, C, D

Avian

Cetacean

coronavirus

coronavirus

Genus

Alphacoronavirus

Carrina oronavirus

Betacoronavirus

Deltacoronavirus

Пути передачи

- □ Передача инфекции осуществляется воздушно-капельным, воздушно-пылевым и контактным путями
- Ведущим путем передачи SARS-CoV-2 является воздушнокапельный, который реализуется при кашле, чихании и разговоре на близком (менее 2 метров) расстоянии
- Контактный путь передачи осуществляется во время рукопожатий и других видах непосредственного контакта с больным, а также через пищевые продукты, поверхности и предметы, контаминированные вирусом
- Возможен фекально-оральный механизм передачи вируса, при употреблении инфицированных продуктов, через грязные руки. РНК SARS-CoV-2 обнаруживается в образцах стула больных, в цитоплазме эпителия желудка, 12-перстной и прямой кишки
- □ Существует риск вертикального механизма передачи коронавируса от матери к плоду.
- Факторы передачи: воздух, пищевые продукты и предметы обихода, контаминированные вирусом

Постановление Правительства РФ от 31 января 2020 г. № 66

- Установлена роль COVID-19, как инфекции, связанной с оказанием медицинской помощи (нозокомиальный путь).
- Медицинские работники подвергаются самому высокому риску инфицирования, поскольку в процессе выполнения профессиональных обязанностей имеют длительный аэрозольный контакт.
- Существует высокий риск формирования эпидемических очагов COVID-19 в организованных коллективах (воинские коллективы, образовательные учреждения, дома престарелых, психоневрологические диспансеры, общежития, медицинские организации) при заносе инфекции,
- СОVID-19 включен в перечень заболеваний, представляющих опасность для окружающих

Определение случая заболевания COVID-19

Подозрительный

Клинические проявления острой респираторной инфекции: температура тела выше 37,5 °C

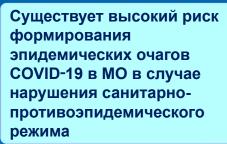
- и один или более из следующих признаков:
- ✓ кашель сухой или со скудной мокротой;
- ✓одышка, ощущение заложенности в грудной клетке;
- инасыщение крови кислородом по данным пульсоксиметрии (SpO₂) ≤ 95%;
- ✓боль в горле, насморк и другие катаральные симптомы, слабость, головная боль, аносмия, дисгевзия, конъюктивит, мышечные боли, кожная сыпь, рвота диарея.

При отсутствии других известных причин, которые объясняют клиническую картину вне зависимости от эпидемио-логического анамнеза.

Вероятный

<u>(кли<mark>нич</mark>ески подтвержденный)</u>

1) Клинические проявления острой респираторной инфекции (ОРИ).



Эпидемиологический анамнез

- ✓ возвращение из зарубежной поездки за 14 дней до появления симптомов;
- ✓ тесные контакты за последние 14 дней с лицом, находящимися под наблюдением COVID-19, который в последующем заболел;
- ✓ тесные контакты за последние 14 дней с лицом, у которого лабораторно подтвержден диагноз COVID-19;
- наличие профессиональных контактов с подтвержденными или подозритель.случаями COVID-19.
- 2) Клинические проявления ОРИ с характерными изменениями в легких* вне зависимости от однократного лаб. анализа на наличие PHK SARS-CoV-2 и эпидемиологического анамнеза
- 3) Клинические проявления ОРИ с характерными изменениями в легких* при невозможности проведения лаб. анализа на наличие PHK SARS-CoV-2.

Подтвержденный

- 1) Положительный результат лабораторного исследования на наличие РНК ИЛИ антигена SARS-CoV-2
- 2) Положительный результат на антитела класса IgA, IgM и/или IgG с клинически подтвержденной COVID-19

COVID-19 (CoronaVIrus Disease 2019)

потенциально тяжёлая острая респираторная инфекция, вызываемая вирусом SARS-CoV-2

Эпидемиологические отличия COVID-19

- Вирус высоко контагиозен, передается быстрее и легче сезонного гриппа и CoV-MERS, что определяет его высокую опасность;
- Для защиты от новой КВИ необходимо организовать 4-х компонентную систему борьбы:
- Ранняя защита (ношение масок, перчаток, мытье рук, соблюдение социальной дистанции);
- ✓ Раннее выявление (быстрое выявление инфицированных, измерение t в местах массового скопления людей, своевременное обращение к врачу);
- Ранняя диагностика (для профилактики внутрибольнич-ного заражения медиков и больных, лучше в амбулаторных условиях спец. обследование);
- Ранняя изоляция (для оперативного сведения к минимуму контактов зараженных со здоровыми людьми

1.1.3. Клинические особенности коронавирусной инфекции

Алгоритм обследования пациента с подозрением на COVID-19

Решение вопросов

- Имеется ли подозрение на КОВИД-19?
- Оценить степень тяжести состояния пациента
- Решить вопрос о маршрутизации пациента
 - Назначить комплексную терапию с учетом периода и степени тяжести заболевания

Клинические особенности COVID-19

Инкубационный период от 2 до 14 суток

Формы COVID-19

легкая, средняя, тяжелая, крайне тяжелая

Клинические варианты

- □ ОРВИ легкого течения;
- пневмония без ДН;
- □ ОРДС (пневмония с ОДН);
- □ сепсис;
- септический шок;
- ДВС-синдром, тромбозы, тромбоэмболии.

Клинические симптомы

- •повышение температуры тела ≥90%;
- •кашель (сухой или с небольшим количеством мокроты) 80%;
- •утомляемость 40%;
- •одышка* 30%
- •ощущение заложенности в грудной клетке ≥20%
- •миалгия (11%), спутанность сознания (9%), головные боли (8 %), кровохарканье (2-3%), диарея (3%), тошнота, рвота, сердцебиение, боль в горле, насморк, снижение обоняния и вкуса, признаки конъюнктивита.

Наиболее тяжелая одышка развивается к 6-8-му!! дню от момента заражения у пациентов старческого возраста возможна атипичная картина заболевания без лихорадки, кашля, одышки. Симптомы включают делирий, падения, функциональное снижение, конъюнктивит, бред, тахикардию или снижение АД

Классификация COVID-19 по степени тяжести

ЛЕГКОЕ ТЕЧЕНИЕ

- •температура тела ниже 38 °C, кашель, слабость, боли в горле;
- отсутствие критериев среднетяжелого и тяжелого течения.

СРЕДНЕТЯЖЕЛОЕ ТЕЧЕНИЕ?

- •лихорадка 38-38,5°C 3-5 дней:
- •ЧДД более 22/мин;
- •одышка при физических нагрузках;
- •изменения при КТ (рентгенографии) КТ 1-2, минимальные или средние;
- •SpO₂ < 95%;</pre>
- •СРБ сыворотки крови более 10 мг/л.

ТЯЖЕЛОЕ ТЕЧЕНИЕ

- •Острое начало болезни, стойкая лихорадка >7 сут, кашель сухой (95%), одышка в покое (100%).
- •ЧДД более 26-30/мин.;
- •SpO₂ ≤ 93%;
- •нестабильная гемодина-мика (САД <90 или ДАД < 60 мм. рт.ст., диурез <20 мл/час), тахикардия
- •изменения в легких при КТ (рентгенографии) КТ 3-4, значительные или субтотальные;
- •лактат артериальной крови > 2 ммоль/л;

•qsofa > 2 балуа КРАЙНЕ ТЯЖЕЛОЕ ТЕЧЕНИЕ

- •снижение уровня сознания, ажитация двигательное
- •ОРДС, одышка, ЧД >30/мин., SpO2< 85-70%;
- •Пациенты в ОРИТ, ОДН с необходимостью респираторной поддержки (ИВЛ);
- •септический шок; ПОН;
- •изменения в легких на КТ (рентгенографии)–КТ 4, значительные или субтотальные или картина ОРДС

qSOFA (quick Seguential Organ Failure Assesment)

qSOFA— ускоренная SOFA— шкала для оценки органной дисфункции.

Включает:

- →Нарушение сознания (ЦНС) по шкале Глазго <13-15 баллов;</p>
- Систолическое давление <100 мм.рт.ст.</p>
- **Частота дыхания ≥ 22 / мин**

Индекс оксигенации (PaO2 / FiO2)

- □ Известно, что снижение индекса оксигенации (PaO2 / FiO2) считается одним из главных критериев острого респираторного дистресс-синдрома (ОРДС).
- При этом степень нарушения оксигенирующей функции легких является и дифференциально-диагностическим критерием
- для острого повреждения легких (ОПЛ) и его наиболее тяжелой стадии - ОРДС:
- □ индекс оксигенации (PaO2 / FiO2) < 300 ОПЛ; индекс оксигенации (PaO2 / FiO2) < 200 ОРДС.

Критерии оценки степени тяжести COVID-19

- У больных с <u>легким</u> <u>течением</u> симптомы регрессируют - 7-10 дн.
- У пациентов <u>с тяжелым и крайне тяжелым течени-ем после 5-8 дня бол-зни</u>:
- ✓ Сохраняется лихорад-ка, появляются симптомы ОДН
- ✓ Прогрессируют инфильтративные изменения в легких (вирусный пневмонит), ОРДС,
- ✓ Появляются признаки повреждения миокарда, почечной и печеночной дисфункции, сепсиса и септического шока
- ✓ Характерны: стойкая лихорадка более 7дн. кашель, одышка.

- У пациентов нередко недооценка степени тяжести (средней!), клинические проявления прогрессируют исподволь. !!Следует обратить внимание на:
- □ Лихорадка (38,5-39°) до 8-14 дней у всех больных, что нередко врачами расценивалось как наслоение бактериальной инфекции, а не как СВР, и назначались комбинации а/б резерва, а не активная противовоспалительная терапия (ПВТ)
- □ На фоне СВР нарастали симптомы ДН (одышка в покое, нехватка воздуха, неуклонное ↓SpO2, сухой кашель, приступообразный, головокружение, реже хрипы в легких, тахикардия, ↓ А/Д)
- И прогрессировал вирусный пневмонит, что подтверждалось увеличением ОПЛ на КТ через 3-4 дня, неуклонным ↓ SpO2
- □ Выявлялись признаки ПОН: повреждения миокарда (ЭКГ, тропонины+), почек (креатинин), печени (АЛТ, АСТ), СРБ, сепсиса (полиорганность, гемодинамические нарушения).

Острый респираторный дистресс синдром

- □ Развивается на фоне чрезмерной, гиперергический СВР на данную инфекцию, гиперактивацией ЦТЛ, продукцией провоспалительных цитокинов (ФНО, ИЛ-1, ИЛ-6, ИЛ-8).
- Увеличение капиллярной проницаемости
- Отек альвеолярно-капиллярных мембран и альвеол
- Нарушение образования сурфактанта
- Признаки нарастающей легочной гипертензии:
- Одышка, частое дыхание с дистанционными хрипами, тахикардия
- Резкая бледность кожных покровов, диффузный цианоз, потливость. Масса хрипов над легкими при аускультации
- Синдром «снежной бури» на рентгенографии легких
- Рефрактерность к кислородотерапии

Вирусная пневмония, ОРДС при COVID-19

Лабораторно-инструментальные критерии ОДН

ОДН — <u>быстро нарастающее</u> несоответствие системы внешнего дыхания потребностям организма для поддержания нормального парциального напряжения О₂ и СО₂ в артериальной крови. <u>Критерии ОДН:</u>

- ✓ РаО₂ <60 мм рт. ст. при дыхании смесью с содержанием 60% кислорода;
 </p>
- ✓ PaCO₂ >60 мм рт. ст.;
- ✓ рН артериальной крови <7,3;</p>
- ✓ Жизненная емкость легких <15 мл/кг;</p>
- ✓ Максимальное инспираторное давление< 25 смвод ст</p>
- ✓ Дефицит оснований BE >±2,3 мм/л
- Рентгенография или КТ ОГК
- Исследование мокроты

Степени острой дыхательной недостаточности!

- 1 компенсированная стадия, нормальный газообмен достигается за счет значительного напряжения системы дыхания. Одышка при нагрузке (18-20 в мин.), цианоза нет. Гемодинамика стабильна. Показатели РаО₂ и РаСО₂, КОС мало изменены.
- 2 клинически выражена, сильная одышка (24-36 в мин.), в удушье, диффузный цианоз, заторможенность, ↓РаО₂, ↑РаСО₂ тахикардия, некомпенсированный метаболический ацидоз. Больные в ОРИТ
- 3 и 4 ст. соответствуют тяжелой, декомпенсированной ст. ОДН. Расстройство сознания от сопора до гипоксической комы, ОНГМ, нарастающая ССН.
 - Тахипноэ более 40 в 1 мин., м.б. апноэ, тотальный цианоз, нарастает ССН, пульс нитевидный, А/Д снижается, олигоанурия. РаО₂ резко ↓ до 35 мм рт.ст., РаСО₂ ↑ (70-90 мм рт. ст.) до карбонаркоза, угнетение дыхат.центра.
- Необходимы немедленные реанимационные мероприятия.

Кожные сыпи при COVID-19

- 1 группа Ангииты кожи имеют инфекционно-аллергический генез и возникают на фоне инфекционных процессов различной, и вирусной этиологии (острая узловатая эритема на фоне ОРВИ) при поражении стенок мелких сосудов дермы ЦИК в виде депозитов с вирусными антигенами. Можно отнести акроваскулиты, что, возможно, обусловлена гипоксией.
- 2 группа Папуло-сквамозные сыпи и розовый лишай-инфекционно-аллергические поражения кожи, часто ассоциированы с COVID-19. Особенность розового лишая при КВИ - отсутствие «материнской бляшки».
- 3 группа Кореподобные сыпи и инфекционные эритемы при COVID-19 указывают на патогенетическую близость к классич-м вирусным экзантемам.
- 4 группа Папуло-везикулезные высыпания (по типу милиарии или эккринной потницы) возникают на фоне субфебрилитета с многодневным повышенным потоотделением у пациентов, характеризуются обширным поражений кожи.
- 5 группа Токсидермии являются следствием индивидуальной непереносимости пациентами определенных лекарственных препаратов.
- 6 группа Крапивница. Уртикарные высыпания могут быть предвестником начала COVID-19, характерно акральное расположение волдырей или крапивница развивается вследствие лекарственной непереносимости и является клинической формой токсидермии.
- 7 группа Артифициальные поражения (трофические изменения тканей лица).
 Являются следствием вынужденного длительного пребывания больных в прон-позиции с целью улучшения дыхательной функции

Дифференциальный диагноз COVID-19

- Диф.диагноз необходим с гриппом, ОРВИ, вызываемыми риновирусом, адено- и РС-вирусом, метапневмовирусом, MERS-CoV, парагриппа, вирусными гастроэнтеритами.
- □ Длительность **инкубации** при COVID-19 <u>от 1 до 14 дней, в среднем -5 дней, при гриппе и ОРВИ до 3 дней.</u>
- При гриппе заболевание начинается остро, при COVID-19 и ОРВИ
 постепенно. При COVID-19 и гриппе чаще высокая лихорадка,
 кашель, слабость, при ОРВИ встречаются редко.
- При гриппе и ОРВИ одышка и проблемы с дыханием отмечаются значительно реже, чем при COVID-19.
- При COVID-19 может быть снижение обоняния и вкуса, что не характерно для гриппа или ОРВИ.
- При вирусных гастроэнтеритах ведущий синдром- поражение ЖКТ,
 симптомы поражения дыхательных путей минимальны.
- □ При диф.диагностике учитываются **эпиданамнез**, клинические симптомы и их динамика.

Дифференциальная диагностика ОРВИ

Клинические симптомы	COVID-19	ОРВИ	ГРИПП
Длительность инкубационного периода	От 1 до 14 дней (в сред- нем 5 дней)	Не более 3 дней	Не более 3 дней
Острое начало	-	-	+
Высокая лихорадка	+	-	++
Слабость	+	-	+
Одышка и затрудненное дыхание	+	+/-	+/-

Любой случай респираторного заболевания следует рассматривать как подозрительный на COVID-19

Верификация диагноза осуществляется на основании результатов лабораторного исследования мазка из носа/ ротоглотки на вирус гриппа, SARS CoV-2 и возбудителей других ОРВИ

Дифференциальная диагностика бактериальной пневмонии

- Лихорадка
- □ Кашель, характер мокроты
- Тахипноэ и/или диспноэ
- Боль в грудной клетке и животе, рвота
- У детей раннего возраста нарушение сознания, судороги
- Локальное укорочение перкуторного звука
- Ослабленное или бронхиальное дыхание, крепитация или мелкопузырчатые влажные хрипы, бронхофония
- На рентгенограмме –инфильтрация легочной ткани отдельных сегментов доли легкого

Особенности COVID-19 в Китае

- —У **80%** пациентов заболевание протекает в легкой и среднетяжелой форме ОРВИ.
 - -Средний возраст пациентов в КНР составляет **51** год, наиболее тяжелые формы были у пациентов пожилого возраста (≥60л)
- —Среди заболевших часто отмечаются <u>сопутст. заболевания:</u> сахарный диабет (в 20%), артериальная гипертензия (в 15%), другие сердечно-сосудистые заболевания (15%).
- —20% заболевания, зарегистрированных в КНР, были классифицированы как тяжелые (15% тяжелых больных, 5% в критическом состоянии).
- —При **тяжелом течении** часто наблюдались быстро прогрессирующее заболевание нижних дыхательных путей, **ОРДС, пневмония, ОДН**, сепсис и септический шок.
- ___В г. Ухань у всех пациентов с тяжелым течением заболевания отмечалась прогрессирующая ОДН: пневмония диагностируется у 100% больных, а ОРДС более чем у 90% больных.

1.1.4. Клинико-лабораторная диагностика коронавирусной инфекции

Нормативные документы

Лабораторная диагностика проводится в соответствии с «Временными рекомендациями по лабораторной диагностике новой коронавирусной инфекции, вызванной 2019-nCoV» (письмо Роспотребнадзора от 21.01.2020 № 02/706-2020-27) и

«Инструкцией об организации работы по диагностике новой коронавирусной инфекции (COVID-19)» (письмо Роспотребнадзора от 18.03.2020 №02/4457-2020-27), направленными в адрес органов исполнительной власти субъектов РФ в сфере охраны здоровья

Диагностика COVID-19

<u>Диагноз</u> устанавливается на основании клинического обследования, данных эпидемиологического анамнеза и результатов инструментальных и лабораторных исследований

<u>Инструментальная</u> <u>диагностика</u>

- КТ легких (максимальная чувствительность);
- обзорная рентгенография легких (большая пропускная способность);
- УЗИ легких (дополнительный метод);
- ЭКГ, пульсоксиметрия.

Подробная оценка жалоб, анамнеза заболевания, эпидемиологического анамнеза

<u>Физикальное</u> <u>обследование</u>

оценка слизистых оболочек верхних дыхательных путей;

Аускультация, перкуссия легких;

пальпация лимфоузлов;

исследование органов брюшной полости с определением размеров печени и селезенки;

термометрия;

/измерение ЧСС, АД и ЧДД;

измерение SpO₂ (ОДН, гипоксемия)

оценка уровня сознания.

Госпитализация осуществляется с учетом требований, предусмотренных приказом Минздрава России от 19.03.2020 № 198н ред. от 07.07.2020

«О временном порядке организации работы МО в целях реализации мер по профилактике и снижению рисков распространения нКВИ COVID-19»

Лабораторная диагностика Этиологическая¹

✔Идент-я PHK SARS-CoV2

✓Выявление Ag SARS CoV2

Выявление lg A,M,G к вирусу

Общая диагностика:

✓общий анализ крови;

✓ биохимический анализ крови;

исследование уровня СРБ;

Коагулограмма, прокальцитонин,

6

Установление клинических признаков и степени тяжести COVID-19

Исследования на COVID-19 в медицинских организациях

В лабораториях мед-х организаций исследования на COVID-19 проводятся только из материала, отобранного у лиц, не имеющих признаков инфекционных заболеваний и не являющихся контактными с больными COVID-19.

- ✓ К работе с тест-системами для диагностики COVID-19 в лаборатории МО допускаются специалисты,
- ✓ давшие письменное согласие и прошедшие инструктаж, проведенный сотрудниками лаб-й Роспотребнадзора,
- ✓ имеющих санитарно-эпидемиологическое заключение на работу с возбудителями инфекционных заболеваний человека II группы патогенности.

Обязательное обследование на COVID-19

- 1. вернувшиеся на территорию РФ с признаками ОРИ;
- 2. контактировавшие с больным COVID-19;
- <mark>3</mark>. с диагнозом <u>«внебольничная пневмония» !!!;</u>
- старше 65 лет, обратившиеся за медицинской помощью с ОРИ;
- медицинские работники, имеющие риски инфицирования COVID-19 на работе (СМП, инф. и пульмоотд.), - 1 раз в неделю (до появления IgG), при появлении симптомов COVID-2019 - немедленно;
- 6. находящиеся в учреждениях <u>постоянного пребывания (</u>кадетские корпуса, дома-интернаты, учреждения ФСИН России) и персонал таких организаций при симптомах ОРИ.
- работники данных организаций при вахтовом методе работы до начала работы;
- 8. дети из организованных коллективов при возникновении 3-х и более случаев заболеваний, не исключающих COVID-19
- Лабораторное обследование на COVID-19 рекомендуется проводить всем лицам с признаками ОРИ по назначению медицинского работника.

Этиологическая лабораторная диагностика COVID-19

Лабораторное обследование на COVID-19 в обязательном порядке проводится при обращении в МО:

- наличие профессиональных контактов с биоматериалом от пациентов с COVID-19 и лиц с подозрением на него;
- рождение от матери, у которой за 14 дней до родов был выявлен подозрительный или подтвержденный случай COVID-19.

За 14 дней до обращения:

- рвозвращение из зарубежной поездки;
- наличие контактов с лицами, находящимися под наблюдением, которые в последующем заболели;
- рналичие тесных контактов с лицами, у которых лабораторно подтвержден диагноз COVID-19.

Основной материал:

 ¬мазок из носоглотки и ротоглотки: сбор мазка с помощью сухого стерильного тампона и эти тампоны д.б. помещены в одну пробирку для увеличения вирусной нагрузки + 2 мл физраствора.

В качестве дополнительного материала (при отриц. результате из основного) для исследования могут использоваться:

□мокрота; бронхоальвеолярный лаваж; (эндо)трахеальный, назофарингеальный аспират; биопсийный или аутопсийный материал легких; цельная кровь, сыворотка; фекалии.

Этиологическая лабораторная диагностика нового коронавируса SARS-CoV-2

- выявление PHK SARS-CoV-2рекомендуется проводить всем лицам с признаками ОРИ;
- □ основным видом биоматериала для лабораторного исследования на наличие РНК SARS-CoV-2 является мазок из носоглотки и/или ротоглотки, на наличие IgA/IgM и IgG к SARS-CoV-2 – кровь;
- все образцы, полученные для лабораторного исследования, следует считать потенциально инфекционными

- тестирование на антитела к вирусу SARS-CoV-2 рекомендуется в следующих случаях:
 - в качестве дополнительного метода диагностики острой инфекции или при невозможности исследования мазков методом амплификации нуклеиновых кислот,
 - для выявления лиц с бессимптомной формой инфекции;
 - для установления факта перенесенной ранее инфекции;
 - для отбора потенциальных доноров иммунокомпетентной плазмы;
- при оценке напряженности поствакцинального протективного иммунитета рекомендуется определение анти-RBD антител (к рецепторсвязывающему домену)

Выявление антигенов SARS-CoV-2

- Выявление антигенов SARS-CoV-2 проводится иммунохроматографическими методами с помощью тест-систем, которые позволяют получить результат в режиме экспресс-диагностики COVID-19 (экспресс-тесты). Время получения результата составляет 10-30 минут.
- □ Диагностическая чувствительность и специфичность экспресс-тестов на антиген SARS-CoV-2 могут быть ниже, чем у тестов на основе МАНК.
- □ Положительные результаты тестов на антиген SARS-CoV-2 могут ожидаться в тот же период развития заболевания, что и выявление РНК вируса: за 2 дня до и на протяжении 5-7 дней после появления симптомов.
- □ Положительный результат теста может рассматриваться как подтверждение диагноза COVID-19, отрицательный результат не позволяет исключить COVID-19.
- Иммунохроматографические тесты могут применяться для экспрессдиагностики COVID-19 в ситуациях, когда проведение молекулярногенетического тестирования методом амплификации нуклеиновых кислот (МАНК), т.е. ПЦР-исследование невозможно, в том числе в удаленных и малонаселенных регионах.

Выявление антител к SARS-CoV-2

- □ Проводится с помощью методов ИФА, ИХЛ или иммунохроматографии.
- □ Методы ИФА и ИХЛ позволяют получать качественные, полуколичественные (коэффициент позитивности) и количественные результаты
- □ Иммунохроматографические методы быстрые диагностические тесты, рассматриваются как тесты «у постели больного» (результат ч/з 10-30 мин Они качественные тесты и определяется наличие IgM, IgG, суммарных AT.
- С помощью выявления отдельных классов антител к SARS-CoV-2 (IgA/IgM, IgG) возможно определение различных фаз инфекционного процесса: серонегативную (АТ нет), активную (диагностически значимый уровень IgA и/или IgM вместе или ↑уровня IgG в парных сыворотках через 2-4 недели; фазу реконвалесценции (↓ в 2-4 раза титра IgA и IgM при сохранении IgG через 2 недели после курса лечения и позднее и фазу перенесенной инфекции (титр IgG без роста в парных сыворотках и отсутствие IgA и IgM).
- Определение <u>IgG к SARS-CoV-2 через 4 недели после вакцинации</u> позволяет подтвердить наличие <u>поствакцинального</u> иммунитета.
- !! Для определения уровней иммноглобулинов к SARS-CoV-2 необходимо использовать наборы реагентов для количественного определения антител, а результаты исследований представлять с использованием условных единиц измерения BAU/мл (bindingantibodyunits, «единицы связывающих антител»). Единицы измерения BAU/мл были приняты BO3 в качестве международного стандарта.

Иммунохимическая диагностика COVID-19

- Выявление антител к SARS-CoV-2 имеет вспомогательное значение для диагностики текущей инфекции и основное для <u>оценки иммунного ответа</u> на текущую или перенесенную инф-цию.
- С целью <u>диагностики</u> COVID-19 рекомендуется <u>раздельное</u> тестирование на антитела класса IgM/ IgA и IgG, а также мониторинг появления антител в динамике (сероконверсии) в неясных случаях повторно через <u>5-7</u> дн.
- □ Лабораторное обследование на IgA, IgM и/или IgG (иногда и суммарно) к SARS-CoV-2 проводится всем медработникам до появления IgG. Кратность обследования 1 раз в 7 дней.
- Рекомендуется тестирование всех пациентов, поступающих в МО <u>в плановом порядке</u>, на IgG (или суммарно) иммунохимическими методами д-ки (ИФА, ИХЛА, ИХМ)

- Антитела класса А (IgA) начинают формироваться и доступны для детекции примерно со 2 дня от начала заболевания, достигают пика через 2 недели и сохраняются длительное время.
- □ Антитела класса М (IgM) начинают выявляться примерно <u>на 7-е сутки</u> от начала заражения, достигают пика через неделю и могут сохраняться в течение 2-х мес. и более.
- □ Примерно с 3-й недели или ранее определяются антитела класса G (IgG) к SARS-CoV-2.
- □ Особенностью гуморального ответа на инфекцию является небольшой временной промежуток между появлением антител IgM и IgG, а иногда и одновременное их формирование.

Чувствительность диагностических тестов в динамике COVID-19 (данные из Китая)

SARS-CoV-2	1-7 дни болезни	8-14 дни болезни	15-39 дни болезни
РНК методом ПЦР	67%	54%	45%
Суммарные антитела	38%	90%	100%
IgM	29%	73%	94%
IgG	19%	54%	80%

Diagnostic Test sensitivity in the Days after Symptom onset Clin. Infect.dis. 2020, Mart 28

Особенности формирования постинфекционного иммунитета

- Формирование иммунитета зависит от степени тяжести COVID-19.
- □ При бессимптомном течении заболевания вирус реплицируется, но быстро подавляется системой ИФН. ВН не достигает порогового уровня, иммунитет чаще не успевает формироваться и эти лица могут болеть повторно.
- У части пациентов с развитием симптомов болезни (2-й фазы), с неосложненным течением, с 12-14 д/болезни продуцируются специфические антитела и развивается постинфекционный иммунитет, эти пациенты повторно болеют редко.
- □ При тяжелом течении заболевания гуморальный иммунитет развивается медленнее, антитела появляются на 3-4 неделе от начала заболевания.
- У 10-15% реконвалесцентов титр антител достигает максимальных значений, они могут стать донорами плазмы.

Меры безопасности при лабораторной диагностике болезни

- SARS-CoV-2 высококонтагиозен, все исследуемые материалы потенциально инфекциозны и при работе с ними
- должны соблюдаться требования СП 1.3.3118-13 «Безопасность работы с микроорганизмами I - II групп патогенности (опасности)».
- Взятие диагностического материала, его маркировка и упаковка выполняется мед.работником, прошедшим инструктаж по сан.-эпидемиол. требованиям и правилам безопасности при работе с биоматериалом (мазки из носоглотки, ротоглотки, моча, фекалии).
- Сотрудники при взятии диагностического материала работают в СИЗ: респираторы типа FFP2; очки для защиты глаз или защитный экран; противочумный костюм, латексные (резиновые) перчатки; водонепроницаемый фартук.
- Мазок из носоглотки или ротоглотки (зева) берется стерильным тампоном, который, после взятия материала помещается в стерильную пластиковую пробирку с транспортной средой.
- Мокрота собирается в одноразовый стерильный пластиковый контейнер объемом – 30-50 мл, герметично закрывающийся. Контейнеры/пробирки маркируются в месте сбора с помощью самоклеющихся этикеток с информацией

Транспортировка материала

- Транспортировка в лабораторию герметично закрытых контейнеров с образцами осуществляется в специальных контейнерах /биксах. Транспортировка возможна на льду
- □ Направления и другая документация на бумажных носителях передается в отдельном полиэтиленовом пакете.
- Пробы от пациентов д.быть транспортированы с соблюдением требований санитарных правил*
- На сопровождающем формуляре необходимо указать наименование подозреваемой ОРИ.
- □ Лабораторная диагностика проводится в лабораториях Центров гигиены и эпидемиологии Роспотребнадзора и других орг-ций, имеющих сан-эпид. заключение на работу с возбудителями III-IV группы патогенности с использованием методов диагностики, не предполагающих накопление возбудителя

- положительный или сомнительный результат передается лечащему врачу и в территориальный орган Роспотребнадзора;
- этот же материал может
 быть направлен для
 повторного тестирования
 в референтную
 лабораторию
- □ срок получения
 результата не более 48
 часов с момента доставки
 образца в лабораторию;
- медицинские организации, выявившие случай заб-я (в т.ч. подозрительный), вносят информацию о нем в информационный ресурс (https://ncov.ncmbr.ru).

Лучевые методы диагностики, принципы выбора

- применяются для первичной диагностики, оценки динамики, определения показаний к переводу в ОРИТ, выписке.
- При отсутствии симптомов и клинических признаков ОРВИ (даже на фоне анамнестических данных) лучевые методы исследований не показаны.
- Симптомы и клинические признаки ОРВИ есть рекомендуется выполнение рентгенографии ОГК.
- Симптомы и клинические признаки ОРВИ и анамнестические данные есть, имеется подозрение на COVID-19: рекомендуется выполнение КТ ОГК
- рекомендуется выполнение рентгенографии ОГК (и в правой боковой проекции) или УЗИ ОГК при отсутствии возможности проведения КТ ОГК
- не рекомендованы для скрининга (в амбулаторных условиях).

Возможности стандартной РГ

- Стандартная РГ имеет низкую чувствительность в выявлении начальных изменений в первые дни заболевания и не может применяться для ранней диагностики.
- Информативность РГ повышается с увеличением длительности течения пневмонии.
- Рентгенография с использованием передвижных (палатных) аппаратов является основным методом лучевой диагностики патологии ОГК в ОРИТ.
- В стационарных условиях относительным преимуществом РГ в сравнении с КТ являются большая пропускная способность.
- Метод позволяет уверенно выявлять (Версия 10 (08.02.2021) тяжелые формы пневмоний и отек легких различной природы, которые требуют госпитализации, в том числе направления в ОРИТ.

Возможности УЗИ легких

- □ УЗИ легких у пациентов с предполагаемой/известной COVID-19 пневмонией является дополнительным методом визуализации, который не заменяет и не исключает проведение РГ и КТ.
- □ При соблюдении правильной методики, выборе правильных показаний и наличии подготовленного врачебного персонала это исследование отличается высокой чувствительностью в выявлении интерстициальных изменений и консолидаций в легочной ткани, но только при субплевральном их расположении.
- Данные УЗИ не позволяют однозначно определить причину возникновения и/или действительную распространенность изменений в легочной ткани (Версия 10 (08.02.2021)
- □ Следует учитывать, что УЗИ не является стандартной процедурой в диагностике пневмоний, оно не включено в клинические рекомендации и стандарты оказания медицинской помощи по диагностике и лечению внебольничной пневмонии.
- В связи с этим результативность исследований в значительной степени зависит от имеющегося опыта и квалификации врача, проводящего исследование.

Возможности КТ легких

- КТ имеет высокую чувствительность в выявлении изменений в легких, характерных для COVID-19.
- □ Применение КТ целесообразно для первичной оценки состояния ОГК у пациентов с тяжелыми прогрессирующими формами заб-я, а также для диф.диагностики выявленных изменений и оценки динамики процесса.
- КТ позволяет выявить характерные изменения в легких у пациентов с COVID-19 еще до появления положительных лабораторных тестов на инфекцию с помощью МАНК (ПЦР).
- КТ выявляет изменения легких у значительного числа пациентов с бессимптомной и легкой формами заболевания, которым не требуется госпитализация. Результаты КТ в этих случаях не влияют на тактику лечения и прогноз болезни при наличии лаб.подтверждения COVID-19.
- Поэтому массовое применение КТ для скрининга асимптомных и легких форм болезни не рекомендуется.
- □ Ограничениями КТ в сравнении с РГ являются меньшая доступность технологии в отдельных медицинских организациях, городах и регионах; недоступность исследования для части пациентов, находящихся на ИВЛ; высокая потребность в КТ-исследованиях для диагностики других заболеваний.

Частота КТ-изменений при COVID-19

- Компьютерная томография (КТ) легких является более чувствительным методом для диагностики вирусной пневмонии, рекомендуется всем пациентам с подозрением на пневмонию;
- Специфические изменения на КТ учитываются при маршрутизации больных с COVID-19;
- Характерно диффузное уплотнение легочной ткани по типу матового стекла и консолидации в сочетании с ретикулярными изменениями. В критических случаях может наблюдаться повышенная замутнённость всех зон легких («белое лёгкое»).
- □ Не характерны: лобарный инфильтрат, очаговая диссеминация. В динамике фокусы уплотнения по типу «матового стекла» могут полностью рассосаться, м.остаться фиброзные полоски.

Частота изменений на КТ и ПЦР	Вероятный COVID-19	Предполагаемый COVID-19	Отрицательный результат ПЦР
ПЦР	59	100	0
КТ легких	88	97	75

Результаты КТ органов грудной клетки

- КТ-1 (минимальный) менее 25% объема легочной ткани,
- КТ-2 (средний) 25-50%,
- КТ-3 (значительный) 50-75%,
- КТ-4 (субтотальный) ≥ 75%.
- Показания к КТ:
- первичная оценка состояния ОГК у больных с тяжелыми прогрессирующими формами COVID-19;
- ✓ диф. диагностика выявленных изменений;
- медицинская сортировка и оценка динамики процесса при среднетяжелом, тяжелом и крайне тяжелом течении болезни

ВАЖНО

- Данные лучевого исследования не заменяют результаты обследования на PHK SARS-CoV 2.
- Отсутствие изменений при КТ не исключает COVID-19 и возможность развития пневмонии после исследования.
- При отсутствии симптомов и легком течении ОРВИ применение рентгенографии, КТ и УЗИ не рекомендуется.
- МРТ и УЗИ не являются стандартными процедурами, и не заменяют КТ.

Динамика инфильтративных изменений при компьютерной томографии легких

Nº п/п	Сроки болезни	норма	«матовое стекло»	Консоли- дация	Двустороннее поражение легких
1	Первые 2 дня	56	56	17	28
2	На 3-5 сутки	9	88	55	76
3	6-12 дни б-ни	4	88	60	88

- В КТ исследовании у пациентов с COVID-19, проведенном в первые 2 дня болезни, у 56% больных отмечена нормальная картина, матовое стекло у 56%, а консолидация у 17%.
- □ При проведении КТ на 3-5 сутки матовое стекло отмечено у 88%
 пациентов, консолидация у 55% и только 9% б-х не имели изменений.
- При оценке на 6-12 сутки матовое стекло отмечено у 88% пациентов, консолидация - у 60% и отсутствие изменений - у 4% больных.
- Двустороннюю инфильтрацию легочной ткани наблюдали у 28% пациентов в первые 2 дня, у 76% - на 3-5 сутки и у 88% больных - на 6-12 сутки.

Оценка динамики пневмонии COVID-19 в ОРИТ

- Оценка динамики пневмонии COVID-19 в ОРИТ проводится по клиническим показаниям:
- оптимально: выполнение КТ легких при возможности транспортировки пациентов в кабинет КТ или с помощью мобильного КТ-аппарата;
- оптимально: выполнение РГ легких при возможности транспортировки пациентов в рентгеновский кабинет;
- возможно: выполнение РГ с помощью передвижного (палатного) рентгеновского аппарата;
- возможно: выполнение УЗИ легких (как дополнительного исследования) при невозможности оценки динамики с помощью КТ и РГ при условии наличия первоначальной информации об истинном объеме и причине поражения легких и подготовленного врачебного персонала
- Рекомендовано использовать специальные меры по ограничению доз облучения при обследовании беременных, новорожденных и детей младшего возраста при возможности развития у них COVID-19 пневмонии с применением стандартных защитных средств (фартуки, воротники).

Дополнительные обследования при COVID-19

- □ Пациентам с признаками ОДН (SpO2 менее 90%) рекомендуется исследование газов артериальной крови с определением PaO2, PaCO2, pH, бикарбонатов, лактата.
- Внезапный рост концентрации Д-димера в анализах крови и клиническое подозрение на ТЭЛА является важным показанием для выполнения КТ-ангиопульмонографии при условии, что ее положительный результат может оказать влияние на лечение и ведение пациента.
- Кратность повторения КТ, РГ или УЗИ зависит от клинических показаний, диктующих необходимость оценки динамики. Рекомендуемая кратность повторения для КТ и РГ ОГК – не реже, чем один раз в 7 дней.
- Для диагностики тромбозов глубоких вен рекомендуется проведение УЗИ сосудов нижних конечностей с допплерографией

Динамика рентгенологических признаков COVID-19 (приложение 1 (с.182-201)

Стадии	сутки	Доминирующие КТ-	Локализация,	Особенности
Ранняя	0–4	признаки Симптом «матового стекла», локальные ретикулярные изменения на фоне «матового стекла»	распространенность Субплеврально, преимущественно нижние доли, ограниченное число пораженных сегментов; одно- или двустороннее (50-75%) распростр.	До 20-50% пациентов могут не иметь рентгенологич еских проявлений на этой стадии
Прогресс и рования	5–8	Симптом «булыжной мостовой», диффузные симптомы «матового стекла», появление зон консолидации	Субтотальное, двустороннее распространение	
Пиковая	9–13	Симптом консолидации, ретикулярнсть легочной паренхимы	Пик объема поражения примерно на 10 сутки, затем постепенное ↓ объема поражения	Сохраняются матового стекла», Плевральый выпот редко
Разреше ния Врем.МР вер.5	>14	Частичное или полное разрешение (расса-сывание). Симптом «матового стекла» может сохраняться как признак рассасывания	Уменьшение объема поражения, зон к онсолидации	Обязательно отсутствуют симптом «булыжной мостовой», плевральный выпот. Стадия м. наблюдаться более 1 месяца

Пульсоксиметрия

- Пульсоксиметрия с измерением SpO₂ для выявления ОДН и оценки выраженности гипоксемии важна для определения тактики ведения пациента!!!
- Это скрининговый метод для выявления пациентов с гипоксемией, нуждающихся в респираторной поддержке и оценивать ее эффективность;
- В истории болезни уровень SpO2 необходимо указывать на фоне и без оксигенотерапии. На фоне кислородотерапии уровень SpO2 должен повышаться до 96-97%, если ниже (93-94%), то эта терапия неэффективна и нужно пересмотреть тактику лечения

ВАЖНО 🔔

- •• Электрокардиография (ЭКГ) рекомендуется всем пациентам, хотя не несет какой-либо специфической информации;
- Пизвестно, что вирусная инфекция и пневмония, помимо декомпенсации хронических соп. заболеваний, увеличивают риск развития нарушений ритма и ОКС, своевременное выявление которых влияет на прогноз.

Кроме того, определенные изменения на ЭКГ (например, удлинение интервала QT) требуют внимания при оценке кардиотоксичности ряда антибактериальных препаратов.

Информативные лабораторные показатели

Маркеры СВР, гипервоспаления при COVID-19:

- 1) <u>цитопения</u> (лейкопения, лимфопения, умеренная тромбоцитопения)
- 2) коагулопатия (тромбоцитопения, повышение D-димера), снижение уровня фибриногена, удлинение ПВ, АЧТВ
- 3) п<u>овреждение</u> тканей/гепатит (повышение уровня ЛДГ, АЛТ, АСТ)
- 4) повышение СРБ коррелирует с объемом поражения легких на КТ и является основанием для начала противовоспалительной терапии, одновременно ↑ уровень (ИЛ-6) и СОЭ в разной ст.↑ ферритина при неблагоприятном течении болезни
- 5) ↑ уровня прокальцитонина о присоединении бактериальной инфекции, коррелирует с ее тяжестью.

<u>Общая лаб.диагностика</u>

- □ В ОАК лимфопения, м.б. лейкопения или лейкоцитоз с учетом д/б, умеренная тромбоцитопения;
- БАК (мочевина, креатинин, электролиты, печеночные ферменты, билирубин, глюкоза, альбумин).
- Уровень СРБ и D-димера в крови коррелируют с тяжестью течения, распространенностью воспалительной инфильтрации, прогнозом и определяют стратегию лечения;
- □ при SpO₂ менее 90% в ОРИТ необходим анализ газов артериальной крови: РаО₂, РаСО₂, рН, ВЕ, лактата; коагулограмма (ПВ, МНО, АЧТВ) для выявления признаков ОДН

Лабораторные критерии тяжести течения COVID-19

<u> Цитокиновый</u> шторм

- ОАК: лейкопения, выраженная лимфопения, снижение числа моноцитов, эозинофилов и базофилов крови,
- □ Иммунограмма: снижение количества Т- и В-лимфоцитов,
- □ CBP: уровень ИЛ-6> 40 пг/мл, СРБ более 75 мг/л, ↑ уровня ферритина, АЛТ, АСТ, ЛДГ сыворотки крови,
- Коагулограмма: ↑ уровня D-димера в 4 и более раз и уровня ПДФ, гиперфибриногенемия, удлинение АЧТВ, нормальный уровень антитромбина III.
- □ При развитии ОРДС каждые 48-72 часа до стойкого улучшения необходимо определять: ИЛ-6,
 □ D-димер, ферритин, фибриноген,
 СРБ, триглицериды, ЛДГ.

Тяжелое течение COVID-19

- **□ D-димер** >1000 нг/мл.
- □ КФК двукратное превышение верхней границы нормы.
- □ СРБ >100 мг/л (норма-5 мг/л).
- □ ЛДГ >245 Ед/л.
- **Тропонины** (выше нормы)
- Абсолютное число лимфоцитов<0,8 x 109/л.
- Ферритин >300 нг/мл.
- IL-6, IL-10 (выше нормы).
- □ Повышение уровня D-димера, низкое количество лимфоцитов фактор риска неблагоприятного прогноза

Критерии тяжести состояния пациента Шкала NEWS ≤3 – легкая степень тяжести, > 3 – состояние пациента оценивается по следующим критериям:

Степень	T, 0C	SpO ₂ , %	KT	СРБ,	Фиб-	D-	Ферри-	Лимфо-	ЛДГ
тяжести				мг/л	рино-	димер	тин	циты,×10 ⁹ /л	
					ген				
Легкая	N	N	0	N	N	N	N	N	N
Средняя	<37°	<95	1-2	20-50	<4	1,5-2N	3-6N	0, 5-0,9	2-4N
Тяжелая	37,8-3	<90 на	3	50-10	4-5	2-4	3-5N	0,5-0,9	2-4N
	9	нИВЛ,		0					
		впо							
Крайне-	≥39°	<90%на	4	≥100	≥6	≥4N	≥6N	<0,5	≥4N
тяжелая		ивл,							
		ЭКМО							

Критерии увеличения степени тяжести =5 и более баллов:

- 1. Возраст≥65 лет +1 степень;
- Злокачественные новообразования, онкогематология, реципиенты донорских органов, ХБП 5, ожирение (ИМТ≥35 и более, сахарный диабет, ХОБЛ)

Мониторинг клинических и лабораторных показателей (данные маркеров цитокинового шторма и коррекцию терапии указать в дневниках!!!)

Клинические признаки

Температура тела

- •высота;
- •кратность подъемов в течение суток, длительность повышения;
- •повторное повышение после нормализации в течение суток и более.

Частота дыхательных движений

•необходимо учитывать прирост в сравнении с исходным.
При частоте > 22 в мин решение вопроса о госпитализации.

SpO₂

•при снижении показателя до уровня ≤ 93%, необходима дотация кислорода.

Лабораторные признаки:

- •уровень лейкоцитов, нейтрофилов, лимфоцитов, тромбоцитов;
- •уровень АЛТ, АСТ, ЛДГ, СРБ, ферритина, тропонина;
- •уровень D-димера;
- •протромбиновое время;
- •уровень фибриногена;

По показаниям:

- •уровень ИЛ-6;
- •количество Т- и В-лимфоцитов;
- •NT- proBNP.

Инструментальные признаки

•характер и площадь поражения легких на КТ ОГК.

Лабораторный мониторинг пациентов с COVID-19 или с подозрением на COVID-19 в зависимости от тяжести состояния

Лёгкое течение

Амбулаторное лечение

Клинический анализ крови Биохимические исследования

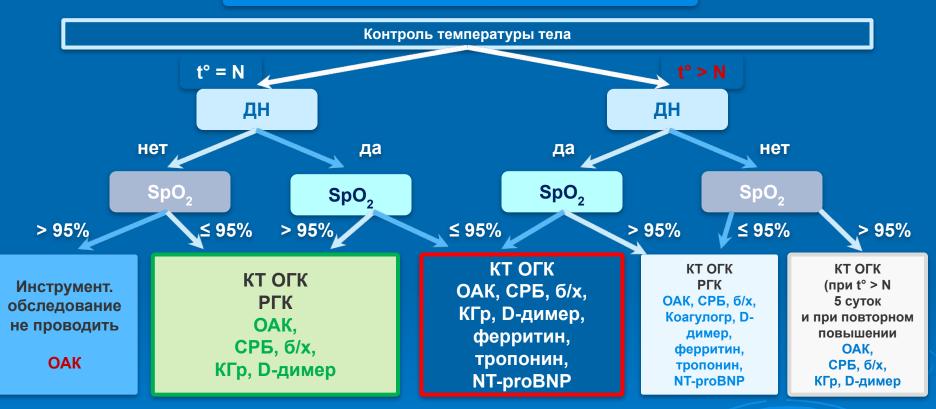
по показаниям

Среднетяжелое течение

Госпитализация

Клинический анализ крови 1 раз в 2-3 дня Биохимические исследования 1 раз в 2-3 дня Контроль гемостаза 1 раз далее по показаниям СРБ, ИЛ-6,ферритин при поступлении (повтор по показаниям)

Тяжелое течение


Госпитализация в ОРИТ **Клинический анализ крови** ежедневно и по показаниям

Биохимические исследования ежедневно и по показаниям

Контроль гемостаза ежедневно и по показаниям СРБ, ИЛ-6, ферритин, прокальцитонин, D-димер в динамике

Приложение 2-1 Лабораторный и инструментальный мониторинг у больных с COVID-19 или подозрением на COVID-19

Пациент с COVID-19/ Подозрением на COVID-19

ДН – дыхательная недостаточность; **КТ ОГТ** – компьютерная томография органов грудной клетки;

РГК – рентген грудной клетки; ОАК – клинический анализ крови;

СРБ – С-реактивный белок; **б/х** – биохимический анализ крови; **КГр** – коагулограмма.

(Протромбиновое время, АЧТВ, фибриноген)

Лабораторная дифференциальная диагностика

- Для проведения диф. диагностики у всех заболевших проводят анализы методом ОТ-ПЦР на возбудители ОРИ: вирусы гриппа типа А и В, РСВ, парагриппа, риновирусы, аденовирусы, человеческие метапневмовирусы, MERS-CoV
- Обязательно проведение микробиологической диагностики (культуральное исследование) и/или <u>ПЦР-</u> д-ки на *Str. pneumoniae, H. Influenzae type* B, *Legionella pneumophila*, а также иные возбудители бактериальных респираторных инфекций нижних дыхательных путей.
- Для экспресс диагностики могут использоваться экспресстесты по выявлению пневмококковой и легионеллезной антигенурии.

Кодирование COVID-19 по МКБ-10

- ВОЗ в январе 2020 г. обновила раздел МКБ-10 «Коды для использования в чрезвычайных ситуациях», добавив специальный код для COVID-19 U07.1 COVID-19 (при летальном исходе от COVID-19 указывается в строке «г)» части I медицинского свидетельства о смерти)
- <u>U07.1</u> Коронавирусная инфекция, вызванная SARS CoV-2, вирус идентифицирован (подтвержден лабораторным тестированием).
- <u>U07.2</u> Коронавирусная инфекция, вызванная SARS CoV-2, вирус не идентифицирован (COVID-19 диагностируется клинически или эпидемиологически, лабораторные данные неубедительны или недоступны).

Примеры формулировки диагнозов

- Новая коронавирусная инфекция COVID-19 (подтвержденная), среднетяжелая форма, внебольничная двусторонняя пневмония без дыхательной недостаточности.
- Новая коронавирусная инфекция COVID-19 (подтвержденная), тяжелая форма, внебольничная двусторонняя пневмония, ДН II степени, бактериальный сепсис с поражением легких (возбудитель не уточнен)
- Подозрение на новую коронавирусную инфекцию COVID-19, тяжелая форма, внебольничная двусторонняя пневмония. Острый респираторный дистресс-синдром. ДН III степени.

Правила формулировки диагноза, кодирования по мкб-10 и учет пациентов с COVID-19 в информационном ресурсе

Примерные формулировки нозологических компонентов диагнозов, связанных с COVID-19:

COVID-19 положительный результат теста на вирус **U07.1**

Формулирование всех видов посмертных диагнозов в случаях, связанных с COVID-19, оформление свидетельства, кодирование и выбор первоначальной причины смерти производятся по единым правилам

COVID-19, вирус не идентифицирован U

Примеры формулировки диагнозов кодирование COVID-19 по МКБ-10

COVID-19	U07.1
Подозрение на COVID-19	U07.2
Подозрение на COVID-19, тест не проведен	U07.2
Подозрение на COVID-19, исключенное	
отрицательным результатом теста на вирус	Z03.8
Наблюдение при подозрении на COVID-19	Z03.8
Носительство возбудителя COVID-19	Z22.8
Контакт с больным COVID-19	Z20.8
Скрининговое обследование с целью	
выявления COVID-19	Z11.5
Изоляция	Z29.0

Пример 1

Основное заболевание:

COVID-19 **U07.1**

Осложнения:

- двусторонняя полисегментарная пневмония;
- дыхательная недостаточность;
- отек легких;
- острый инфаркт миокарда задней стенки левого желудочка;
- мерцание предсердий.

Сопутствующие заболевания:

сахарный диабет 2 типа с почечными осложнениями.

Пример 2

Основное заболевание:

острая язва желудка с кровотечением К25.0

Осложнения:

- желудочное кровотечение;
- острая постгеморрагическая анемия;
- сердечная недостаточность.

Сопутствующие заболевания: COVID-19.

Порядок госпитализации в медицинские организации пациентов в зависимости от степени тяжести заболевания*

Койки для пациентов средней тяжести:

- І. Пациенты на амбулаторном лечении, при сохранении температуры тела ≥ 38,5 °C в течение 3 дней.
- II. Пациенты вне зависимости от тяжести состояния:
 - 1) пациенты, относящиеся к группе риска;
- 2) пациенты, проживающие в общежитии, многонаселенной квартире, с лицами старше 65 лет, с лицами, страдающими хрон.заболеваниями бронхолегочной, сердечно-сосудистой и эндокринной систем при двух из критериев:
 - a) SpO₂ ≥ 95% (обязательный критерий); б) T < 38 °C; в) ЧДД ≤ 22.

Койки для пациентов в тяжелом состоянии, не требующих ИВЛ:

Пациенты средней тяжести при наличии 2 критер-в:

- а) насыщение крови кислородом по данным пульсоксиметрии < 95%;
- б) T ≥ 38 °C; в) частота дыхательных движений > 22;
- г) наличие признаков пневмонии с объемом изменений в обоих легких более 25%.

Койки для пациентов, находящихся в крайне тяжелом состоянии, требующих ИВЛ:

- а) нарушение сознания;
- б) SpO₂ < 92% (на фоне кислородотерапии);
- в) ЧДД > 35.

Койки с НИВЛ:

Пациенты в тяжелом состоянии при наличии 2 крит-в: а) SpO₂ ≤ 93%; б) T ≥ 39 °C; в) ЧДД ≥ 30. Дополнительными признаками нахождения пациента в тяжелом состоянии являются снижение уровня сознания, ажитация, нестабильные гемодинамические показатели (САД < 90 мм рт. ст., ДАД < 60 мм рт. ст.).

Пациенты в возрасте до 18 лет госпитализируются при наличии одного из критериев:

- а) $T > 39,0 \, ^{\circ}C$ в день обращения или $T > 38 \, ^{\circ}C$ в течение 5 дней и больше;
- б) дыхательная недостаточность;
- в) тахикардия у детей более 20% от возрастной нормы;
- г) наличие геморрагической сыпи;
- д) наличие любого из следующих экстренных и неотложных признаков: судороги; шок; тяжелая ДН; тяжелое обезвоживание; угнетение сознания (сонливость) или возбуждение;
- е) наличие тяжелых фоновых заболеваний:
- ж) невозможность изоляции при проживании с лицами, относящими к группе риска;
- з) отсутствие условий для лечения на дому или гарантий выполнения рекомендаций.

^{*} Госпитализация осуществляется с учетом требований, предусмотренных приказом Минздрава России от 19.03.2020 № 198н ред. от 07.07.2020

Благодарю за внимание

