

«Soy sauce optics»

Using a laser beam passing through a **thin layer** (about 200 µm) of soy sauce the **thermal lens** effect can be observed. Investigate this phenomenon.

Team Russia Reporter: Katerina Zamaraeva

Distance between glasses from 0.13 to 1mm

Clamping the glasses

1. First observations

Without lens

In the beginning with lens After some time

2. First observations

The rings formed

Main point

Absorption

Qualitative explanation

Due to thermal expansion of liquids:

 $\rho_1 < \rho_2 < \rho_3$

 $n_1 < n_2 < n_3$

Rays are deflected to the side with a large refractive index.

Dispersive lens

Why image gets smaller?

Size of picture

Screen

After some time all soy sauce heating

No temperature difference

No change in the refractive index

Characteris tically distance soy lensRays are different distances and changing the reflective index therefore there is a phase shift

Mathematical model

Absorption coefficient $\pmb{\delta}$:

14

Coefficient- changing reflective index with the temperature 1.3910

$$T = \begin{cases} T_0 + \frac{\delta I_0}{4\kappa} (R^2 - r^2), r \le R \\ T_0, r > R \end{cases}$$

Program model

Intensity distribution in the image

Theory VS practice

Program Maple VS Practice

Experimental

Experimental finding of focal length

Compeering

$$F = \frac{2LR}{h - 2R} = \frac{1}{D}$$

Parametric studies

The effect of laser current on image size

With increasing current increases the image

23

Image width from laser current

Optical power VS thickness of soy sauce

Density VS Temperature

Conclusion

Experimental setup. Laser with constant power

Qualitative explanation(different hitting soy sous , different phase of beam)

Temperature distribution and absorption coefficient

Theoretical formula for focal length and got method for experimental Finding coefficient showing the change reflective index with temperature

Got comparing practice and theory and explain the errors

The dependents image width from laser current

Changing density with temperature

Qualitative graphs

In the center-maximum temperature and minimum refractive index

Освещенность

$$n = n_0(1 + \alpha T) = n_0 \left(1 + \alpha \left(T_0 + \frac{\delta I_0 d}{4\gamma} R^2 \right) \right) - \frac{n_0 d\alpha \delta I_0}{4\gamma} r^2$$
$$= n_{ex} - \frac{n_0 d\alpha \delta I_0}{4\gamma} r^2$$

$$I = I_0 \exp(-\delta z); \quad \delta = \delta(\lambda, T) \approx \delta(\lambda) \qquad c\rho \ \frac{\partial T}{\partial t} = \varkappa \Delta T + Q(r, t)$$

$$I = \frac{dP}{dS} \qquad Q = -\frac{dP}{dV} = -\frac{d}{dz} \left(\frac{dP}{dS}\right)$$

$$= \delta I_0 \exp(-\delta z)$$

$$c\rho \ \frac{\partial T}{\partial t} = \kappa \Delta T + Q(\mathbf{r}, t) \rightarrow \qquad \Delta T = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial z^2} + \frac{1}{r} \frac{\partial^2 T}{\partial \varphi^2}$$
$$\Delta T = -\frac{Q(z)}{\kappa} = -\frac{\delta I_0 \exp(-\delta z)}{\kappa} \qquad \rightarrow \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial z^2}$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + \frac{\partial^2 T}{\partial z^2} = -\frac{\delta I_0 \exp(-\delta z)}{\kappa}$$

В приближении $\delta h \ll 1$, $\exp(-\delta z) \approx 1$, $\frac{\partial^2 T}{\partial z^2} \approx 0$

$$\begin{aligned} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) &= -\frac{\delta I_0}{\kappa}, r \leq R \\ \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) &= 0, r > R \end{aligned}$$
 $T(r)$ непрерывна

СПЕКТР ВИДИМОГО СВЕТА ПО ДЛИНЕ ВОЛНЫ

Laser 450 нм

Цвет	Диапазон длин волн, нм	Диапазон частот, ТГц
Фиолетовый	380—440	790—680
Синий	440—485	680—620
Голубой	485—500	620—600
Зелёный	500—565	600—530
Жёлтый	565—590	530—510
Оранжевый	590—625	510—480
Красный	625—740	480—405

• Стекло 1,52

Перевод из люксов в СИ

200 люкс = 0.00002928257686676 ватт на кв. см (при 555 нм)

* 5/7

• ХАРАКТЕРИСТИКА ДАТЧИКА

012-09835A