## Сверхпроводниковая цифровая электроника

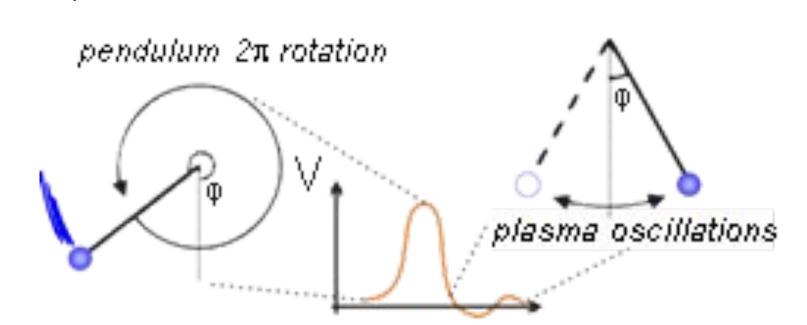
## Физическая основа работы логических схем

Фундаментальные физические явления, лежащие в основе работы сверхпроводящих логических схем, - это эффект сверхпроводимости, квантование магнитного потока и эффект Джозефсона. Первое явление позволяет передавать баллистический сигнал, не ограниченный мощностью, необходимой для зарядки емкости межкомпонентных линий. Оно обеспечивает наибольшее преимущество в энергоэффективности по сравнению с традиционной технологией СМОS, т.к. сверхпроводящие микрополосковые линии способны передавать пикосекундные сигналы без искажений со скоростью, приближающейся к скорости света, на расстояниях, значительно превышающих типичный размер чипа, и с низкими перекрестными помехами. Это основа для быстрых дальнодействующих взаимодействий в сверхпроводящих цепях.

Отсутствие сопротивления (R = 0) приводит к отсутствию напряжения (V = 0) в сверхпроводящей цепи в стационарном состоянии. При этом протекание сверхпроводящего тока вызвано не разностью электрических потенциалов (т.е. напряжением V =  $\delta$ U=0), а разностью фаз сверхпроводящего параметра порядка  $\delta\theta$ . Магнитный поток  $\Phi$  в сверхпроводящем контуре индуктивности L обеспечивает увеличение сверхпроводящей фазы вдоль петли и приводит к постоянному циркулирующему току I =  $\Phi$  / L. Это соотношение аналогично закону Oмa I = V / R. Это позволяет писать линейные уравнения Кирхгофа для сверхпроводящих цепей. Магнитный поток  $\Phi$  в сверхпроводящем контуре индуктивности L обеспечивает увеличение сверхпроводящей фазы вдоль петли и приводит к постоянному циркулирующему току I =  $\Phi$  / L. Это соотношение аналогично закону Oмa I = V / R и позволяет писать линейные уравнения Кирхгофа для сверхпроводящих цепей.

Квантование магнитного потока вносит принципиальную разницу в работу КМОП и сверхпроводящих схем. Это следует из однозначности волновой функции сверхпроводящих электронов. Действительно, увеличение сверхпроводящей фазы на петле соответствует магнитному потоку как  $\Phi = (\Phi_0 / 2\pi) \nabla \theta dI$  (где  $\Phi_0 = h / 2e \approx 2 \times 10^{-15}$  Вб - квант магнитного потока (single flux quantum (SFQ)), h - постоянная Планка, а e – заряд электрона). Выполнение этого соотношения возможно, если  $\theta dI = 2\pi n$  (где n целое) и, следовательно,  $\Phi = n\Phi_0$ . Магнитный поток в сверхпроводящем замкнутом контуре соответственно, может принимать только значения, кратные кванту потока.

Физическое представление информации обычно основано на квантовании магнитного потока. Например, наличие или отсутствие SFQ в сверхпроводящем контуре можно рассматривать, как логическую единицу «1» или ноль «0». Чрезвычайно важно, что благодаря такому представлению информация физически локализована. Это принципиально отличается от представления информации в полупроводниковых схемах. Локализация приводит к глубокой аналогии между сверхпроводящими логическими ячейками и клеточными автоматами фон Неймана, где преобладают короткодействующие взаимодействия.


Нелинейным элементом в сверхпроводящих цепях является джозефсоновский переход. Это слабое звено между двумя сверхпроводниками, например, наиболее часто используемый сэндвич сверхпроводникизолятор-сверхпроводник (SIS). Одним из наиболее важных параметров джозефсоновского перехода является критический ток Iс. Это максимальный сверхпроводящий ток, который может протекать через переход. Джозефсоновский переход можно переключить из сверхпроводящего в резистивное состояние, увеличивая ток выше Iс, что позволяет изменять магнитный поток в сверхпроводящем контуре и, следовательно, выполнять цифровую логическую операцию.

Динамика SIS-перехода обычно описывается в рамках модели резистивно-шунтированного перехода с емкостью (RSJC). Эта модель представляет джозефсоновский переход как параллельное соединение самого перехода (пропускает только сверхпроводящий ток  $l_s$ ), резистора (нормальный ток  $l_r = V / R$ ) и конденсатора (емкостный ток  $l_{cap} = C (\partial V / \partial t)$ , где t -время). Полный ток через переход равен сумме  $l = l_s +$   $l_r + l_{cap}$ . Эта модель основана на эффектах Джозефсона постоянного и переменного тока, которые определяют сверхпроводящий ток  $l_s$  и напряжение V.

Эффект Джозефсона постоянного тока описывает сверхпроводящее фазовое соотношение (CPR) тока. Для SIS-перехода это - Is = Ic sin  $\phi$ , где  $\phi$  =  $\theta$  - разность фаз сверхпроводящего параметра порядка через джозефсоновский переход, которая называется фазой Джозефсона. Представляя связь между сверхпроводящей фазой параметра порядка и магнитным потоком как  $\phi$  =  $2\pi\Phi$  /  $\Phi$ 0, отметим, что CPR связывает ток с магнитным потоком в сверхпроводящей петле. Основное соотношение эффекта Джозефсона переменного тока (нестационарного эффекта Джозефсона) связывает напряжение на джозефсоновском переходе в резистивном состоянии со сверхпроводящей фазовой эволюцией как V = ( $\Phi$ 0 /  $\Phi$ 1) [ $\Phi$ 1]. Согласно этому соотношению рост джозефсоновской фазы на  $\Phi$ 1 сопровождается появлением на переходе импульса напряжения, для которого  $\Phi$ 1 V dt =  $\Phi$ 0. Следовательно, однократное переключение джозефсоновского перехода в резистивное состояние соответствует прохождению SFQ-импульса через переход.

Энергия, рассеиваемая в процессе переключения, составляет EJ ~  $lc\Phi0$  ~ 2  $10^{-19}$  Дж, принимая типичное значение lc ~ 0,1 мA. Такое типичное значение критического тока обусловлено рабочей температурой (жидкий гелий), T=4,2 К. Для правильной работы схем оно должно быть примерно на три порядка выше, чем эффективное значение теплового шумового тока при этой температуре,  $l_T=(2\pi/\Phi0)~k_BT$ ~0,18 мкA, где  $k_B$  - постоянная Больцмана. Характерная частота процесса переключения джозефсоновского перехода определяется параметрами джозефсоновского перехода,  $\omega_c=(2\pi/\Phi0)~lcRn$ , где произведение lcRn = $V_c$ -характеристическое напряжение джозефсоновского перехода, а Rn - сопротивление перехода в нормальном состоянии. Поскольку SIS-переходы обладают большой емкостью, они обычно шунтируются внешними резисторами, чтобы избежать LC-резонансов. При этом сопротивление Rn оказывается практически равным сопротивлению шунта. Для переходов на основе Rn0 жарактерная частота порядка Rn

Это уравнение полностью аналогично уравнению для механического маятника с моментом инерции  $\beta_c$  /  $\omega^2$  (емкость здесь аналогична массе), коэффициентом вязкости 1 /  $\omega_c$  (сопротивление определяет демпфирование) и приложенным крутящим моментом I / I $_c$ . Эта простая аналогия позволяет рассматривать сверхпроводящую цифровую схему как сеть связанных маятников. Вращение маятника на  $2\pi$  сопровождается последующими колебаниями вокруг точки устойчивого равновесия.



Импульс напряжения на джозефсоновском переходе, соответствующий прохождению SFQ через него и механическая аналогия этого процесса с вращением маятника.