Оценка прочности корпуса компрессора ГТД при ударе оторвавшейся лопатки

Мною была решена задача проверки возможности вылета лопатки одной из ступеней осевого компрессора за пределы корпуса с ПОМОЩЬЮ программы конечноэлементного LS-DYNA. B анализа данной презентации приведено описание решения задачи И полученных результатов.

Компоненты 1, 2 и 3 – рабочие лопатки (с целью упрощения модели хвостовики всех лопаток компонента 3 объединены с диском); компоненты 4 и 5 – части диска, компонент 6 – внешняя обечайка корпуса, компонент 7 – внутренняя обечайка корпуса, компоненты 8 и 9 – направляющие аппараты (показаны только частично), компоненты 10 и 11 – тела, необходимые для ограничения движения и подавления автоколебаний части ротора осевого компрессора, используемой в расчёте. Компоненты 1-5 все вместе для удобства в дальнейшем будем называть ротором расчётной модели.

Физические и механические свойства материалов модели

Номер компонен- тов модели	Марка материала						
1-5	Сплав ВТ8	103,5	768	861	4480	_	0,3
6	Сплав ОТ4-1	89,02	384	445	4550	1126	0,3
7-9	Сталь 11Х11Н2В2 МФ-Ш (ЭИ962-Ш)	193,9	735	835	7800	1893	0,3
10,11	_	103,5	_	_	4480	_	0,3

В соответствии с исходными данными перепад температур в расчётной модели незначителен, потому влияние температуры было учтено косвенно через изменение свойств материалов. Свойства материалов взяты при следующих температурах:

Сплав ВТ8 – 228 °С, Сплав ОТ4-1 – 215 °С, Сталь 11Х11Н2В2МФ-Ш – 221 °С.

Модели материалов, размеры, типы элементов и количество узлов

Номер компонен- тов модели	Модель материала	Размер элементов, мм	Типы элементов	Количество узлов
1-5	*MAT_PIECEWISE_LINEAR_PLASTICITY Упругопластический изотропный материал с возможностью задания произвольной кривой зависимости напряжений от деформации, критерия разрушения и учёта влияния скорости деформирования	0,15-0,5 (лопатки), 0,5(0,3 вблизи мест крепления вылетающей лопатки и двух соседних)-1,2(диск)	Тетраэдрические, гексаэдрические, пирамидные (четырёхугольные пирамиды), призматические (треугольные призмы)	4, 8, 5 и 6 соответст- венно
6,7	*MAT_PIECEWISE_LINEAR_PLASTICITY Упругопластический изотропный материал	0,5-1,8	гексаэдрические	8
8,9	*MAT_PIECEWISE_LINEAR_PLASTICITY Упругопластический изотропный материал	0,2-1	Тетраэдрические, гексаэдрические, пирамидные (четырёхугольные пирамиды).	4, 8 и 6 соответст- венно
10	*MAT_ELASTIC Упругий материал	2	гексаэдрические	8
11	*MAT_RIGID Абсолютно твёрдый материал	2	гексаэдрические	8

Зависимость напряжений от деформации для сплава ВТ8

И

С Т И

н н Ы

е

н

а

П

р я

е

н

И

Поскольку для сплава ВТ8 в качестве исходных данных были получены диаграммы деформирования материала для ряда температур, то в расчёте для данного материала была использована кривая зависимости истинных напряжений (true stress) от эффективной пластической деформации (effective plastic strain).

Эффективная пластическая деформация	Истинные напряжения, МПа
0,002	775,59136
0,00246	787,0146235
0,00532	798,5200795
0,0681	929,754477

Ограничения на движение и нагружение расчётной модели

В соответствии с исходными данными по наиболее опасному расчётному режиму ротору расчётной модели (компоненты 1-5) была задана скорость вращения 3169 рад/с (30262 об/мин, карты *INITIAL_VELOCITY_GENERATION, *BOUNDARY_PRESCRIBED_MOTION).

Для задания ограничений на вращение расчётной модели было создано два абсолютно твёрдых узловых тела (карта *CONSTRAINED_NODAL_RIGID_BODY) А и Б. Во избежание возможных проблем перед созданием узлового твёрдого тела А в расчётную модель было добавлено простое упругое тело (компонент 10), узлы элементов которого и были использованы при создании узлового твёрдого тела А. Узловому твёрдому телу А запрещены любые движения. Из двух твёрдых узловых тел с помощью карты *CONSTRAINED_JOINT_REVOLUTE был получен цилиндрический шарнир (цилиндрический шарнир запрещает любое относительное движение, кроме вращения одного тела относительно другого).

Узлы, из которых созданы абсолютно твёрдые узловые тела А (слева) и Б (справа).

Ограничения на движение расчётной модели

Узлы по краям направляющих аппаратов жёстко закреплены. Также, как и узлы по краям внешней обечайки корпуса.

Жёсткое закрепление узлов

Демпфирование автоколебаний ротора расчётной модели

Несмотря на использование специально предназначенной для этого карты *INITIAL_VELOCITY_GENERATION при задании скорости вращения в начальный момент времени расчёта появляются автоколебания ротора. Вызваны они предположительно быстрым деформированием системы в очень короткий промежуток времени и проявляются в очень ощутимых колебаниях напряжений (~ ± 50% от значений эквивалентных (по Мизесу) напряжений в сравнении с расчётом, в котором их удалось подавить). Для подавления данных автоколебаний были применены карты *DAMPING_RELATIVE.

Чтобы использовать карту *DAMPING_RELATIVE, необходимо выполнение двух условий:

1. Нужно создать абсолютно твёрдое тело, которое будет двигаться также, как и компоненты, колебания которых необходимо подавить.

2. Нужно определить частоту, на которой будет применено демпфирование колебаний.

Для выполнения первого условия было создано абсолютно твёрдое тело (компонент 11) и ему задано вращение (3169 рад/с).

Демпфирование автоколебаний ротора расчётной модели

Для выполнения второго условия был проделан расчёт собственных частот для двух простых моделей – диска (компоненты 4 и 5) и рабочей лопатки (компонент 2) – также с использованием программы конечноэлементного анализа LS-DYNA.

Модели, использованные при расчёте собственных частот

Демпфирование автоколебаний ротора расчётной модели

Полученные значения собственных частот приведены далее в таблице. Поскольку однозначно сказать, какие именно частоты необходимо использовать при задании демпфирования очень проблематично, то было использовано суммарно 12 собственных частот и, соответственно, 12 карт *DAMPING_RELATIVE. Они выделены цветом.

Собственные частоты расчётной модели, состоящей из				
ди	ска	рабочей лопатки		
Номер	Частота, Гц	Номер	Частота, Гц	
1	951	1	1947	
2	1702	2	4855	
3	3058	3	7428	
4	3101	4	8016	
5	3755	5	9939	
6	4674	6	12803	
7	4765	7	14209	
8	4801	8	15235	
9	5128	9	16135	
10 5229		10	17940	

Критерий разрушения моделей материалов

Для всех моделей материалов, за исключением используемых для компонентов 10 и 11, был задан критерий разрушения. Также для модели материала, используемой для части диска (компонент 5) не задан критерий разрушения. В качестве критерия разрушения были использованы значения эффективной пластической деформации при разрушении (Effective plastic strain to failure). Эти значения приняты равными ресурсу пластичности материала p_f . Ресурс пластичности материала определяется по формуле

$$p_f = \ln\left(\frac{1}{1-\psi}\right),$$

где ψ – относительное сужение при разрыве.

Величины относительного сужения при разрыве взяты из указанных в таблице ГОСТ`ов.

Марка материала	ГОСТ		Значения эффективной пластической деформации при разрушении, используемые в расчёте
Сплав ВТ8	26492-85	20	0,223
Сплав ОТ4-1	26492-85	30	0,357
Сталь 11Х11Н2В2МФ-Ш (ЭИ962-Ш)	5949-75	50	0,693

Контакты между компонентами и общая информация о расчётной модели

общий В используется расчёте контакт компонентами (карта между всеми *CONTACT ERODING SINGLE SURFACE). При использовании данного контакта программа сама определяет зоны контакта. Также в расчёте используется контакт, соединяющий (склеивающий) рабочую часть рабочей лопатки (компонент 1) и её хвостовик (компонент 2) (карта *CONTACT_TIED_SURFACE_TO_SURFACE). Хвостовики трёх лопаток (компонент 2) вставлены в пазы диска (компонент 4) и зафиксированы с помощью контровочных планок (контровочные планки объединены с диском). Соответственно при расчёте для этих компонентов используется общий контакт. Остальные рабочие части рабочих лопаток компрессора (компонент 3) имеют общие узлы с диском (контакт не требуется). Также и части диска (компоненты 4 и 5) имеют общие узлы. Внутренняя обечайка корпуса (компонент 7) и направляющие аппараты (компоненты 8 и 9) зафиксированы друг относительно друга благодаря пазам, имеющимся в исходной геометрии и сохранённым в расчётной модели, а также общему контакту между компонентами.

Общее расчётное время задачи – 1 мс.

Общее количество элементов в расчётной модели – 3552661.

Общее число узлов в расчётной модели – 1783349.

Общее время расчёта на компьютере (8-ми ядерный процессор AMD Ryzen 7 1700, ЗГГц; 64 ГБ оперативной памяти) – 24 часа 39 минут 35 секунд.

У всех используемых в расчётной модели элементов одна точка интегрирования на элемент.

Основные этапы расчёта

Расчёт можно разбить на три основные этапа:

1. В начальный момент времени к ротору расчётной модели прикладывается скорость вращения 3169 рад/с. Далее она поддерживается постоянной. Для подавления автоколебаний ротора используется карта *DAMPING_RELATIVE. Первый этап продолжается от момента времени 0 мс и до 0,25 мс.

2. На втором этапе расчёта демпфипрование не используется. Ротор расчётной модели продолжает вращение со скоростью 3169 рад/с. Второй этап продолжается от момента времени 0,25 мс и до 0,3 мс.

3. Третий этап расчёта начинается после деактивации контакта между рабочей частью рабочей лопатки (компонент 1) и её хвостовиком (компонент 2). Далее рабочая часть лопатки под действием центробежных сил летит по направлению к корпусу и происходит удар. Третий этап продолжается от момента времени 0,3 мс и до окончания расчёта в момент времени 1 мс.

Эквивалентные (по Мизесу) напряжения (в элементах) в моменты времени 0,25 мс (слева) и 0,3 мс (справа), МПа

Как можно видеть, колебания напряжений отсутствуют, а, следовательно, автоколебания ротора расчётной модели были полностью подавлены с помощью карт *DAMPING_RELATIVE.

У всех элементов, расчётной используемых В модели, одна точка интегрирования на элемент, и, соответственно, программа LS-DYNA определяет ОДНО значение эквивалентного напряжения для всего элемента на каждом шаге расчёта. Далее через ЭТО значение И аналогичные значения В соседних элементах определяются напряжения в узлах элемента, что приводит к Поэтому погрешностям. напряжения на внутренней поверхности внутренней обечайки корпуса показаны здесь и далее в элементах, а не в узлах.

Эквивалентные (по Мизесу) напряжения (слева в элементах, справа в узлах) в момент удара рабочей части рабочей лопатки о корпус (0,345 мс), МПа

Эквивалентные (по Мизесу) напряжения (слева в элементах, справа в узлах) в момент повторного удара рабочей части рабочей лопатки о корпус (0,54 мс), МПа

Эквивалентные (по Мизесу) напряжения (слева в узлах, справа в элементах), МПа

>730 670 610 550 490 430 370 310 250 190 <130	H8,1040289 Scalar:7.393E+002 H8,1043890 Scalar:7.386E+002 H8,1033091 H8,1048391 Scalar:7.355E+002Scalar:7.378E+002 H8,1036692 H8,1048392 Scalar:7.359E 50812r:7.355E+002	>770 710 650 590 530 470 410 350 290 230 <170	Image: Second
	Scalar: 7.363E+002		

Наибольшие значения эквивалентных (по Мизесу) напряжений в элементах в моменты удара (слева, 0,345 мс) и повторного удара (справа, 0,54 мс), МПа

Выводы

1. В момент удара лопатки о корпус наибольшие напряжения возникают на внутренней поверхности внутренней обечайки корпуса. Максимальное значение эквивалентных (по Мизесу) напряжений составляет 739 МПа, что незначительно больше предела текучести стали 11Х11Н2В2МФ-Ш (735 МПа) и меньше предела прочности (835МПа). Данные напряжения не могут привести к разрушению корпуса осевого компрессора.

2. В момент времени 0,54 мс рабочая лопатка, соседняя с оторвавшейся, ударяет её, что приводит к повторному удару рабочей части лопатки о корпус. Наибольшие напряжения также возникают на внутренней поверхности внутренней обечайки корпуса. Максимальное значение эквивалентных (по Мизесу) напряжений в этом случае составляет 792 МПа, что также больше предела текучести и меньше предела прочности. Поэтому данные напряжения также не могут привести к разрушению корпуса осевого компрессора.

3. Удары следующих лопаток об оторвавшуюся после повторного удара (вследствие пластического деформирования и разрушения части элементов последней) уже не приводят к появлению напряжений, превышающих предел текучести материала и потому также не могут привести к разрушению корпуса.

Из всего вышесказанного можно сделать вывод о том, что корпус осевого компрессора выдержит удар рабочей части рабочей лопатки данной ступени осевого компрессора и вылета оторвавшейся лопатки за пределы корпуса не произойдёт.