медицинский колледж

Федерального государственного бюджетного образовательного учреждения высшего образования «Уральский государственный университет путей сообщения»

Внутренняя среда организма. Кровь.

Крючкова Татьяна Сергеевна Организм человека примерно на две трети состоит из воды. Это основной компонент практически всех тканей, находится как внутри, так и вне клеток.

Больше всего воды содержат жидкие ткани - кровь и лимфа. Помимо воды в состав тканевой жидкости входят различные органические вещества, синтезируемые клетками.

Кровь, лимфа и тканевая жидкость составляют внутреннюю среду организма.

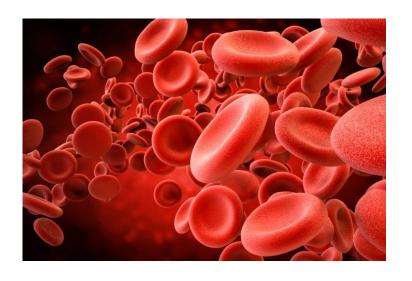
Гомеостаз

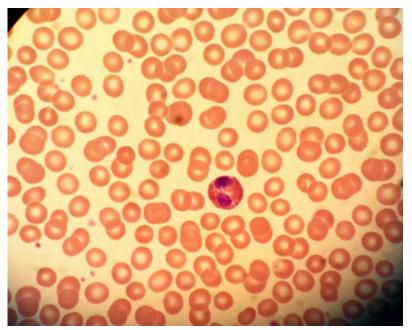
Внутренняя среда организма отличается своим постоянством. В организме поддерживаются на определенном уровне температура, рН крови и лимфы, химический состав жидких сред. Несмотря на меняющиеся внешние условия, основные биохимические показатели внутренней среды остаются практически одними и теми же. При изменении какого-либо фактора внутренней среды в организме включаются мощные системы саморегуляции. Они обеспечивают работу органов и систем, направленную на восстановление постоянных для индивида физиологических и биохимических показателей. Такая совокупность механизмов, обеспечивающих поддержание постоянства внутренних сред организма, называется гомеостазом.

Кровь — жидкая ткань, количество которой у взрослого человека составляет 5 — 6л (7 — 8% массы тела). Кровь циркулирует по кровеносным сосудам. В сети капилляров она обменивается веществами с межклеточной жидкостью. Через стенку капилляров питательные вещества и кислород переходят к клеткам, а продукты обмена поступают обратно в кровь.

Лимфа — жидкая ткань, образующаяся из тканевой жидкости в слепо начинающихся лимфатических капиллярах: избыток межклеточной жидкости поступает в них через крупные поры между эндотелиоцитами. Благодаря этому в просвет микрососудов могут проникать белковые и жировые молекулы. В течение суток в организме образуется 2—4 л лимфы. Лимфа содержит клеточные элементы. В основном это клетки иммунной системы — лимфоциты.

Кровь состоит из плазмы крови и форменных элементов.


Плазма — жидкая часть крови. Она составляет примерно 55 % всего ее объема. Главным компонентом плазмы является вода (около 90 %). Сухой остаток составляют органические и неорганические вещества.


Основные органические вещества плазмы крови — белки. В первую очередь это альбумины, глобулины и липопротеиды.

Белки плазмы выполняют следующие функции:

- 1)свертывающую;
- 2) защитную;
- 3)транспортную;
- 4)поддержание онкотического давления.

Помимо белков в крови содержатся глюкоза (4,2—6,4 ммоль/л) и липиды. Неорганические вещества плазмы крови представлены в основном ионами натрия и хлора. Помимо них в плазме содержатся ионы калия, кальция, НСОЗ- и др. Также строго постоянным является и уровень кислотности плазмы. В норме рН крови составляет 7,40+0,04. Отклонения от этого значения вызывают тяжелые системные нарушения в жизнедеятельности организма. Закисление внутренней среды организма называют ацидозом, а ощелачивание — алкалозом. Плазма крови, лишенная фибриногена, называется сывороткой крови. Сыворотка крови широко используется в медицине с диагностическими и лечебными целями.

Эритроциты

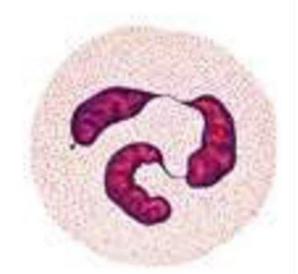
Эритроциты, или красные кровяные клетки, составляют самую значительную часть форменных элементов. Их количество в норме в 1 литре крови у женщин составляет 4 — 4,5 * 1012 (4 — 4,5 млн в 1 мм3), у мужчин 4,5 — 5* 1012 (4,5 — 5 млн в 1 мм3). Основная функция эритроцитов — перенос кислорода от легких к тканям и углекислого газа от тканей к легким. Для выполнения этой функции они имеют специфическое строение и состав. 95 % их массы занимает железосодержащий белок — гемоглобин. Зрелые эритроциты лишены ядра. Эритроциты имеют форму двояковогнутого диска, способного к деформации. На поверхности красных кровяных клеток имеются специальные белкимаркеры, которые являются антигенами групп крови. Продолжительность жизни эритроцитов достигает 120 дней. По истечении этого срока они попадают в селезенку, где и разрушаются.

Лейкоциты

Лейкоциты, или белые кровяные клетки, отвечают в организме за иммунитет. Их общее количество в 1 л в норме составляет 4—9 * 109. Они крупнее эритроцитов и имеют ядро. Лейкоциты могут изменять свою форму, многие из них способны переходить из просвета кровеносных сосудов в ткани.

Лейкоциты

зернистые (гранулоциты)

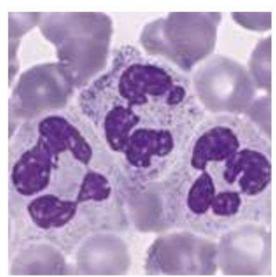

незернистые (агранулоциты)

- нейтрофилы (нейтрофильные лейкоциты),
- эозинофилы (эозинофильные лейкоциты),
- базофилы (базофильные лейкоциты).

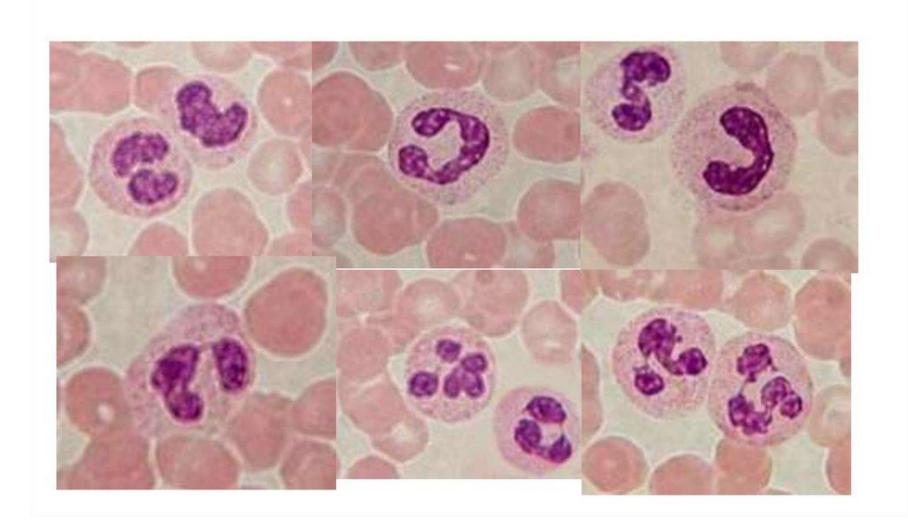
- моноциты
- лимфоциты

Нейтрофилы

Нейтрофилы- клетки округлой формы с ярко-фиолетовым сегментоядерным (3-5 — лопастным ядром) и светлофиолетовой цитоплазмой в которой едва улавливается пылевидная зернистость. Они составляют 47-75% от общего количества лейкоцитов. Диаметр 10-12 мкм. Продолжительность жизни — 8 суток.



Стадии дифференцировки:


1.Юные 2.Палочкоядерные 3.Сегментоядерные. В процессе дифференцировки первыми появляются азурофильные гранулы, затем- специфические гранулы.

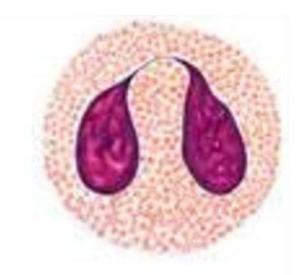
Функции:

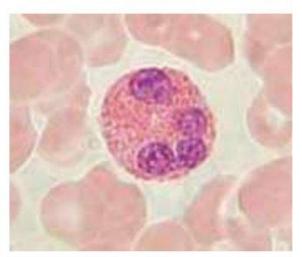
- 1. Называются микрофагами, т.к обладают высокой способность к фагоцитозу и первыми приходя в очаг воспаления.
- 2.В течение первой секунды после стимуляции нейтрофилы увеличивают поглощение кислорода и расходуют большое его кол-во, происходит респираторный взрыв.

Нейтрофилы

Эозинофилы.

Эозинофилы — клетки округлой формы с яркофиолетовым 2-сегментным ядром и цитоплазмой, заполненной крупными оксифильными гранулами. Кол-во 1-5%, D=12-14 мкм, продолжительность жизни 8-14 дней.


Стадии дифференцировки:

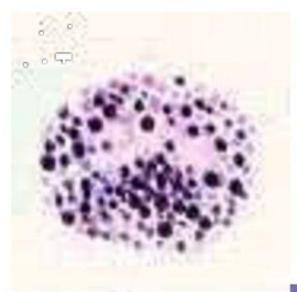

1.Юные 2.Палочкоядерные 3.Сегментоядерные Гранулы эозинофилов делятся на:

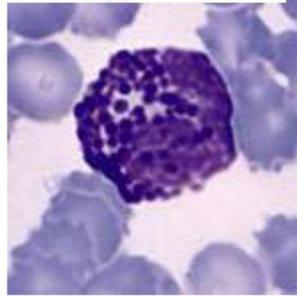
- 1. Неспецифические (являются разновидностью лизосом)
- 2.Специфические гранулы.....

Функции:

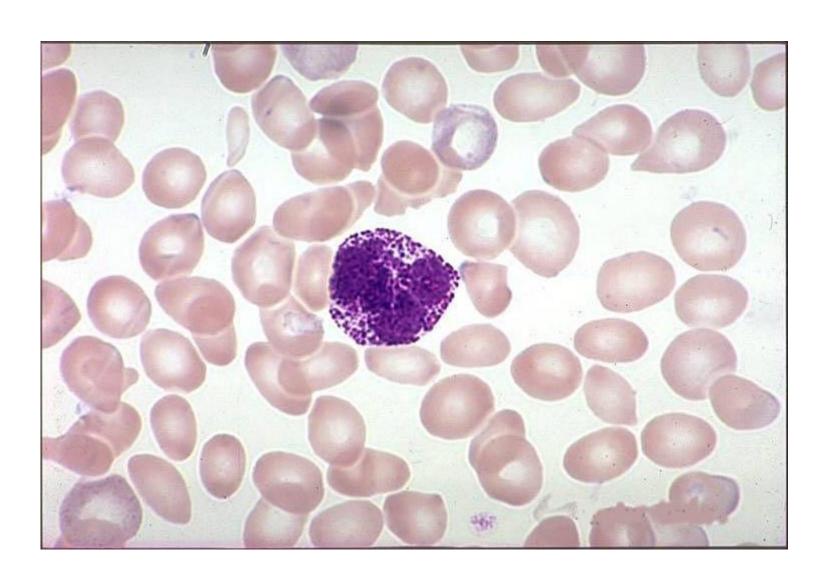
- 1. Участвуют в паразитарных реакциях
- 2.Участвуют в аллергических и анафилактических реакциях
- 3. Участвуют в воспалительных реакциях, обладают фагоцитарной активностью, но в меньшей степени, чем нейтрофилы.

Базофилы


Базофил — клетка округлой формы со светлофиолетовым слабодольчатым ядром, которые маскирую крупные базофильные метахроматические гранулы. Кол-во составляет 0,5-1,0%, D=9-11 мкм. Продолжительность жизни 1-2 суток. Основные функции выполняют в тканях.


В цитоплазме имеют 2 вида гранул:

- 1. Специфические базофильные гранулы.....
- 2. Несепецифические (азурофильные) гранулы лизосомы.

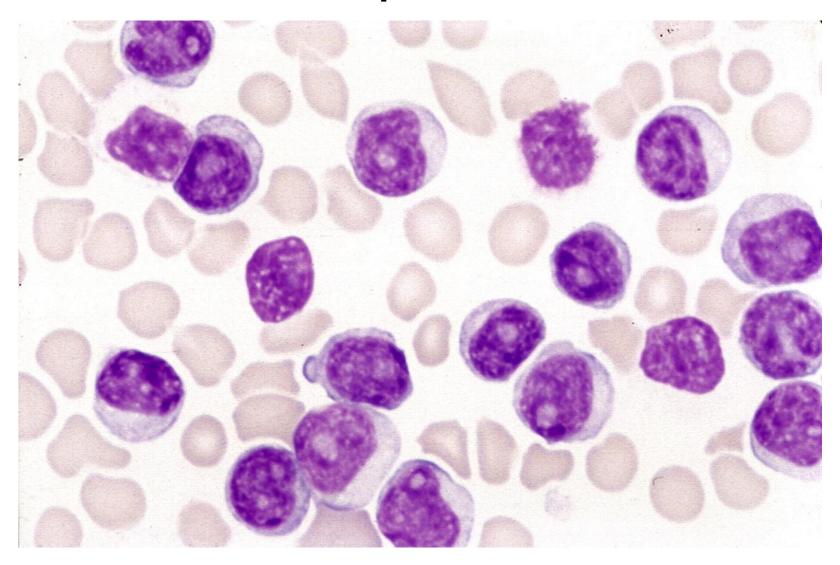

Функции:

- 1. Участвуют в аллергических реакциях
- Участвуют в процессах свертывания крови и способствуют проницаемости сосудов.

Базофил

Лимфоциты

Лимфоцит — клетка округлой формы, которую почти полностью занимает круглое ядро темносинего цвета и узкий ободок светло-голубой цитоплазмой. Кол-во 20-35%. Различают:

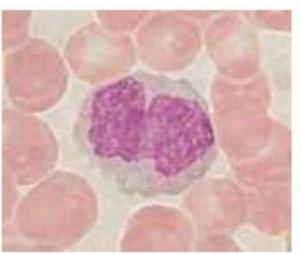

- -малые, D=4,5-6,0 мкм
- -cредние, D=7,0-10,0 мкм
- -большие, D= более 10 мкм

Функциональная классификация:

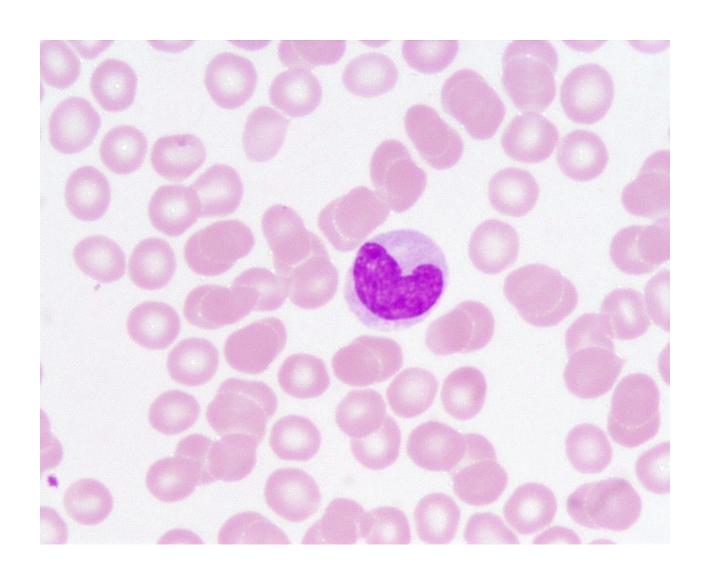
Лимфоциты — основные иммунокомпетентные клетки, которые делятся на В- и Т-лимфоциты и NK-клетки.

Они участвуют противоопухолевом иммунитете.

Лимфоциты

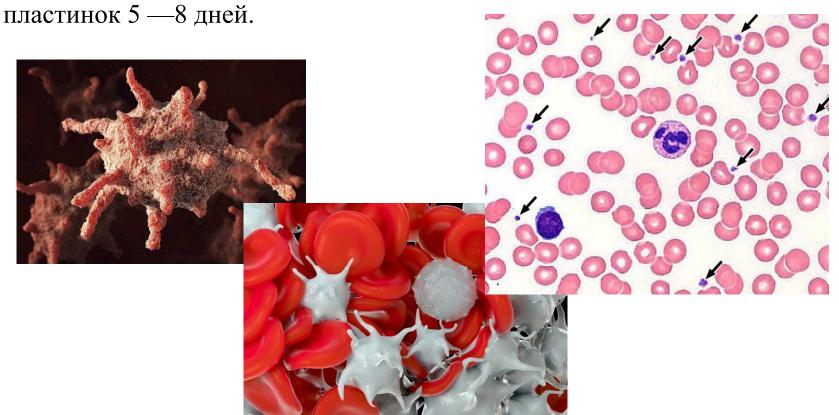

Моноциты

Моноцит — самая крупная клетка со светлофиолетовым бобовидной формы ядром и широким ободком серо-голубой цитоплазмы, D=18-22 мкм. Кол-во 6-8%. Основную функцию выполняют в тканях. Содержит большое количество вакуолей и лизосом, поэтому основной функцией является фагоцитоз.


Функции:

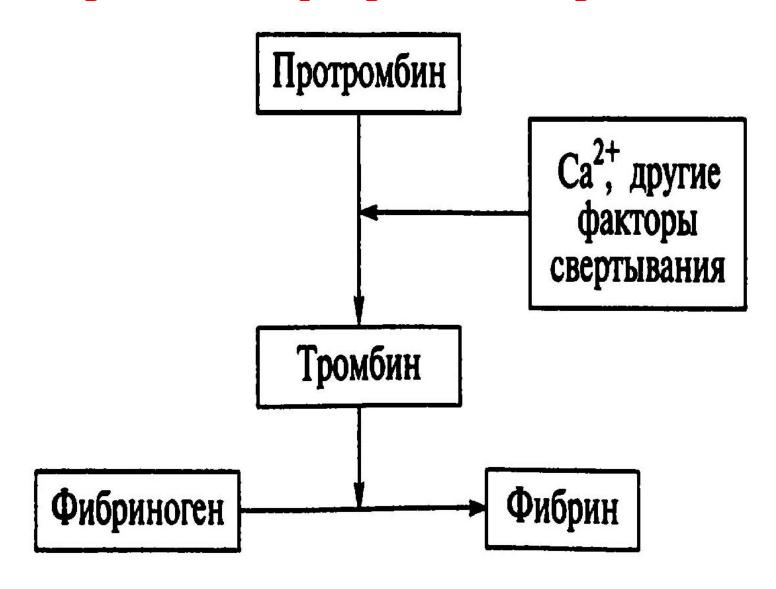
- 1. Фагоцитоз
- 2. Участие в иммунных реакциях в качестве антиген представляющих клеток

Моноцит


Понятие о лейкоцитарной формуле

ОАК При проведении на ee мазках осуществляется дифференциальный подсчет относительного лейкоцитов содержания отдельных видов. Формула такого подсчета регистрируются в табличной форме в виде так называемой формулы, лейкоцитарной В содержание которой каждого клеток вида общему представлено В процентах ПО отношению к количеству лейкоцитов, принятому за 100%

Тромбоциты.


В свертывании крови большое значение имеют тромбоциты, или кровяные пластинки. Их количество в 1 л крови составляет 180 — 360 * 109. Тромбоциты по сути своей не являются полноценными клетками. Они образуются в красном костном мозге в результате отщепления фрагментов цитоплазмы от гигантской клетки — мегакариоцита. Ядра они не содержат, имеют размеры 2 — 5 мкм. Продолжительность жизни кровяных пластинок 5 — 8 лией

Гемостаз.

При повреждении сосуда тромбоциты фиксируются на поврежденной поверхности. Они склеиваются между собой и формируют так называемый тромбоцитарный тромб. В плазме крови постоянно содержатся 13 факторов свертывания. Основными из них являются ионы кальция, протромбин, фибриноген, тромбопластин. Ряд факторов свертывания крови синтезируется в печени. Процесс окончательного образования тромба представляет собой цепь реакций с участием всех факторов свертывания. Сущностью его является превращение растворимого белка фибриногена в нерастворимый фибрин. Этот процесс осуществляется под действием фермента тромбина. Последний образуется из протромбина под влиянием ряда факторов свертывания, в том числе ионов кальция. Фибрин оседает в виде сети нитей, между которыми находятся застрявшие в них клетки крови. В результате этих процессов образуется прочный фибриновый тромб.

Образование фибринового тромба

Помимо свертывающей системы в организме существует также противосвертывающая система.

Без нее вся кровь в считанные минуты свернулась бы прямо в сосудистом русле. К веществам, препятствующим образованию тромба (антикоагулянтам), относится гепарин. Он способен нейтрализовать тромбин, и в результате этого фибриноген не превращается в фибрин. Образовавшийся тромб может быть разрушен ферментом фибринолизином (плазмином). Он способен растворять фибрин.

Группы крови

Эритроциты человека имеют на поверхности своей мембраны особые белки — агглютиногены, которые выполняют роль специфических маркеров — антигенов. В сыворотке крови человека постоянно циркулируют специальные антитела — агглютинины.

В настоящий момент известно довольно большое количество систем групп крови. Однако основными из них являются две: система **AB0 и резус-фактор**. Группа крови в течение жизни не изменяется. На эритроцитах находятся две разновидности белка-агглютиногена. Один из них обозначается как A, другой — В. При этом в сыворотке находятся агглютинины либо а (альфа), либо β (бета). У одного человека агглютиногены и агглютинины не могут быть соименными. При попадании с чужой кровью эритроцитов, чьи белкимаркеры совпадают по названию с антителами (A — a; B — β), происходит агглютинация — склеивание и разрушение эритроцитов. Из разрушенных эритроцитов в плазму выходит гемоглобин. Этот процесс называется гемолизом.

По системе АВ0 выделяют четыре группы крови.

У лиц с первой группой крови — 0(I) на мембранах эритроцитов нет ни A, ни B агглютиногенов, в плазме их крови находятся агглютинины α и β .

Вторая группа крови A(II) характеризуется наличием на эритроцитах агглютиногена A, при этом в сыворотке циркулируют β-агглютинины. У людей с B(III) группой на эритроцитах находятся В-агглютиногены; в сыворотке — α-агглютинины.

Люди с **четвертой группой крови AB(IV)** на поверхности эритроцитов имеют и A-, и B-агглютиногены, в их сыворотке отсутствуют агглютинины.

Группы крови по системе АВ0

Группа крови	Агглютиногены (на поверхности эритроцитов)	Агглютинины (в сыворотке крови)
0(I)		αиβ
A(H)	A	β
В(Ш)	В	α
AB(IV)	АиВ	

Резус-фактор.

Это белок-маркер. У 85 % людей он присутствует на поверхности эритроцитов, поэтому их кровь резус-положительная (Rh+). У остальных людей нет резус-фактора, следовательно, их кровь резус**отрицательная (Rh-).** У резус-отрицательных людей в обычных условиях антитела к данному белку-маркеру не вырабатываются. Они появляются только при попадании в их организм эритроцитов, имеющих на своей поверхности резус-фактор. Наибольшую опасность представляет повторный контакт с резус-положительной кровью. Все это сопровождается возникновением агглютинации, как и при переливании крови, несовместимой по системе АВО. Такая возможность существует в следующих случаях:

- 1) повторное переливание резус-положительной крови резусотрицательному реципиенту;
- 2)формирование резус-конфликта возможно при беременности резусотрицательной женщины резус-положительным плодом (наследование этого фактора от отца).

Переливание крови. Донорство

Переливание крови называется гемотрансфузией. Человек, который отдает свою кровь для переливания, называется донором, тот, кто ее получает, — реципиентом. В настоящий момент доноров обязательно обследуют на носительство ВИЧ, гепатита и ряда других заболеваний. Реципиенту можно переливать только кровь его группы как по системе AB0, так и по резус-фактору.

Спасибо за внимание!