
Теория ядерных реакторов

Методические указания к курсовому проекту по спецкурсу \mathfrak{N}_{2} 2

Докладчик Алексеенко Николай Николаевич

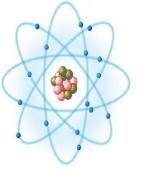
> к.ф.-м.н. доцент

08/31/2023

Тема проекта

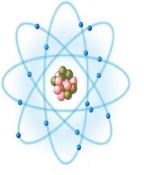
РАСЧЕТ КРИТИЧЕСКИХ ПАРАМЕТРОВ ГОМОГЕННОГО ЯДЕРНОГО РЕАКТОРА

Состав активной зоны: графит и уран с отношением чисел ядер 235 U/(235 U+ 238 U)=0.15.


Состав отражателя - торий.

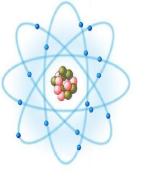
Исполнитель студент гр. Фт-490202

Иванов Пётр Сидорович



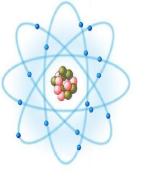
Цель проекта

- 1. Неформальное изучение основных понятий теории ядерных реакторов.
- 2. Ознакомление с методами расчета реакторов.
- 3. Многогрупповой расчет критических параметров реактора заданной геометрии и состава.
- 4. Анализ полученных результатов.



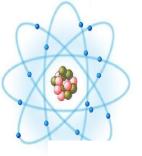
План работы

- 1. Освежить в памяти лекции, по теории ядерных реакторов.
- 2. По лекциям и методичке изучить расчет критических параметров реактора методом Шихова-Новожилова.
- 3. В соответствии с заданием к курсовому проекту сделать «вручную» расчет критических параметров реактора без отражателя в нулевом приближении по 9-групповой системе констант.
- 4. Произвести расчеты согласно индивидуальному заданию по программе MSN. Изучить, полученные вручную и по программе, результаты и написать отчет.



План работы

- 5. Осмыслить полученные результаты и написать отчет в соответствии с ГОСТ 7.32-2001.
- 6. В отчете должны быть разделы: оглавление, введение, краткое описание методики расчета, результаты расчета, обсуждение результатов расчета, список использованных источников. Во введении нужно отразить существующие методы расчета реакторов и обосновать применение метода Шихова-Новожилова в курсовом проекте.
- 7. Подготовить презентацию работы и защитить проект.


1. Подготовка ядерных констант

Для расчета используются 26-групповые ядерные константы, из книги Л.П. Абагян и др.

С целью детального изучения методики расчета в задании к проекту студентам предлагается сделать самостоятельно расчет критических параметров реактора сферической геометрии без отражателя (в нулевом приближении) по 9-групповой системе ядерных констант. Поэтому возникает необходимость перевода 26-групповых констант в 9-групповые.

Таблица 26-групповых констант

Уран (U²³³)

Связь между константами 26-групповой и 9-групповой систем

• 1-4:

• 5-7: 2

• 8-10: 3

• 11-13: 4

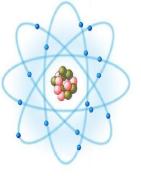
• 14-16: 5

• 17-19: 6

• 20-22: 7

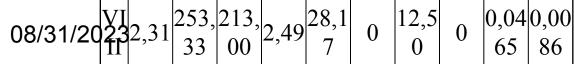
• 23-25: 8

• 26 : 9


Для расчета констант 1-й группы 9групповой системы используются константы с 1-й по 4-ю группу 26групповой системы и т.д. Расчет констант выполняется по формуле

$$\sigma_{I} = \frac{1}{\Delta u_{I}} \sum_{k=1}^{4} \sigma_{ik} \Delta u_{ik} = \frac{\sigma_{I1} \Delta u_{I1} + \sigma_{I2} \Delta u_{I2} + \sigma_{I3} \Delta u_{I3} + \sigma_{I4} \Delta u_{I4}}{\Delta u_{I1} + \Delta u_{I2} + \Delta u_{I3} + \Delta u_{I4}}$$

Здесь слева микроскопическое сечение 1-й группы 9-групповой системы, а справа (в формуле) соответствующие сечения 26-групповой системы.



Результат расчета

	²³³ U: 9-групповые константы σ, барн											
i	ΔU	$\sigma_{_t}$	$\sigma_{\!f}$	v	σ_{c}	$\sigma_{_{in}}$	$\sigma_{_{\!e}}$	μ_e	σ_{3} (e)	υζ		
I	2,01	7,10	1,87	2,94	0,03	1,15	4,04	0,72	0,00 49	0,00 24		
II	1,95	7,80	2,10	2,54	0,13	0,64	4,93	0,34	0,01 22	0,00 48		
III	2,23	12,0	2,92	2,49	0,41	0,13	8,56	0,08	0,03 04	0,00 79		
IV	2,31	17,6 0	6,30	2,49	1,35	0	9,93	0,01	0,03 66	0,00 85		
V	2,31	28,9 7	12,2 7	2,49	4,03	0	12,6 7	0	0,04 72	0,00 86		
VI	2 31	66,3	40,6	2 49	12,6	0	13,0	0	0,04			
	I	J	/	l	/	l	U		04	UOU		

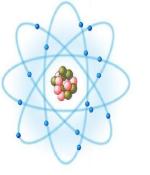
По этому алгоритму вычисляются константы (за исключением сечения замедления) для всех члер, входящих в состав активной зоны реактора.

Расчет сечения замедления

Сечение замедления нейтронов определенной группы зависит не только от эффективных сечений среды, но и от формы внутри-группового спектра, и от ширины группы. Поэтому, в отличие от других групповых констант, сечение замедления нейтронов может существенно изменяться в зависимости от формы группового спектра даже в том случае, если все элементарные сечения в пределах группы от энергии не зависят. Поэтому для расчета сечения замедления при упругом рассеянии используем предварительно рассчитанные 9-групповые константы упругого рассеяния и рассчитываем сечение замедления по формуле

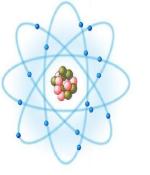
 $\sigma_{_{3}}(e) = \frac{\xi \sigma_{_{e}}}{\Delta u} \cdot b ,$

где величины в правой части являются 9-групповыми, а величину b будем считать равной единице.


Расчет микроскопических сечений матриц межгрупповых переходов

В таблицах Л.П. Абагян и др. эта матрица для 233 U имеет вид

i		10								Vis servi
	0	1	2	3	4	5	6	7	8	9
1	0,00	0,00	0,04	0,16	0,28	0,34	0,20	0,08	0,03	0,01
2	0,01	0,06	0,23	0,42	0,41	0,22	0,09	0,03	0,01	-
3	0,05	0,16	0,32	0,41	0,24	0,10	0,03	0,01	-	-
4	0,08	0,19	0,42	0,27	0,12	0,04	0,01	-	1-	-
5	0,20	0,33	0,22	0,10	0,04	0,01	-		-	-
6	0,29	0,25	0,08	0,03	0,01	-	1	1	-	-
7	0,23	0,12	0,03	0,02	7		-	-	-	-
8	0,17	0,12	+	63.0	-	-	-	-	-	-
9	0.06	0,04	0,02	1	-	Paul (1-4	-	-	-

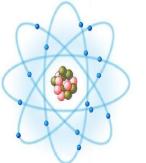


Матрица межгрупповых переходов

- В этой таблице содержатся сечения неупругого рассеяния нейтронов, в результате которого нейтрон, теряя энергию переходит из группы i в группу j. При этом $i \le j$.
- В первом столбце k=0, i=j находятся диагональные элементы матрицы.
- Диагональные элементы определяют вероятность того, что в результате неупругого рассеяния нейтрона на ядре ²³³U энергия нейтрона останется в пределах той же группы, в которой он находился до рассеяния.

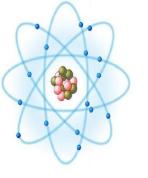
Расчет 9-групповой матрицы рассеяния

Он проводится по формуле


$$\sigma_{ii} = \frac{1}{\Delta u_i} \sum_{k=1}^{ni} \Delta u_{ik} \sum_{l=1}^{n} \sigma_{ii}^{kl}$$

Для расчета по этой формуле 26-групповую матрицу нужно представить в привычном виде, где поддиагональные элементы нулевые, а диагональные и наддиагональные могут отличаться от нуля.

После этого её нужно разделить на блоки в соответствии со следующим слайдом.



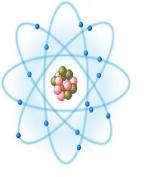
Разбиение 26-групповой матрицы рассеяния на блоки

σ_{11}	σ_{12}	σ_{13}	σ_{14}	$\sigma_{_{15}}$	σ_{16}	$\sigma_{_{17}}$	σ ₁₈	$\sigma_{_{19}}$
	σ_{22}	σ_{23}	σ_{24}	$\sigma_{_{25}}$	26	$\sigma_{_{27}}$	σ_28	$\sigma_{_{29}}$
		σ_{33}	σ_{34}	σ_{35}	σ_{f_6}	σ_{37}	σ ₃₈ -	<u> 0</u>
		11	σ_{44}	$\sigma_{_{45}}$	σ ₄₆	JO ₄₇	σ_{48}	0 49
				σ_{55}	σ ₅₆	$\sigma_{_{57}}$	$\sigma_{_{58}}$	$\sigma_{_{59}}$
					σ_{66}	<u>σ</u> ₆₇	68	$\sigma_{_{69}}$
						σ ₇₇	0/8	
							$\sigma_{_{88}}$	$\sigma_{_{89}}$

Вычисление 9-групповой матрицы рассеяния

Расчет проводится по формуле, представленной на слайде 11. Развернём её для трёх элементов 9-групповой матрицы:

$$\sigma_{I,I}^{9} = \frac{(\sigma_{11} + \sigma_{12} + \sigma_{13} + \sigma_{14})\Delta u_{1} + (\sigma_{22} + \sigma_{23} + \sigma_{24})\Delta u_{2} + (\sigma_{33} + \sigma_{34})\Delta u_{3} + \sigma_{44}\Delta u_{4}}{\Delta u_{1} + \Delta u_{2} + \Delta u_{3} + \Delta u_{4}} (3)$$

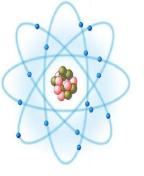

$$\sigma_{I,II}^{9} = \frac{(\sigma_{15} + \sigma_{16} + \sigma_{17})\Delta u_{1} + (\sigma_{25} + \sigma_{26} + \sigma_{27})\Delta u_{2} + (\sigma_{35} + \sigma_{36} + \sigma_{37})\Delta u_{3} + (\sigma_{45} + \sigma_{46} + \sigma_{47})\Delta u_{4}}{\Delta u_{1} + \Delta u_{2} + \Delta u_{3} + \Delta u_{4}} (3')$$

$$\sigma_{\text{II,II}}^{9} = \frac{(\sigma_{55} + \sigma_{56} + \sigma_{57})\Delta u_{5} + (\sigma_{66} + \sigma_{67})\Delta u_{6} + \sigma_{77}\Delta u_{7}}{\Delta u_{5} + \Delta u_{6} + \Delta u_{7}} (3'')$$

По этим формулам вычисляются матрицы рассеяния для всех ядер, входящих в состав активной зоны реактора.

2. Расчет макроскопических сечений

Макроскопическое сечение — это сумма произведений чисел ядер в единице объёма активной зоны (отражателя) на их микроскопические сечения.

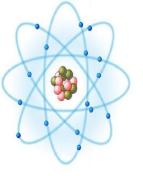

<u>Пример.</u> Пусть в активной зоне гомогенного реактора содержится ²³⁵U, ²³⁸U и ¹²C. Требуется вычислить макроскопическое сечение полного взаимодействия нейтронов с ядрами. Это можно сделать по формуле

$$\Sigma_t = \sigma_t^8 N_8 + \sigma_t^5 N_5 + \sigma_t^c N_c \qquad (4)$$

Для расчета по формуле (4) необходимо определить числа ядер в единице объема в активной зоны и отражателя для всех элементов.

Согласно проектному заданию в составе активной зоны содержатся 3 компонента — делящийся элемент, сырьевой элемент и разбавитель (в частности — замедлитель). Поэтому, имеет смысл в расчет чисел ядер ввести величину обогащения топлива β по делящемуся компоненту и величину разбавления топлива α .

$$\beta = \frac{N_1}{N_1 + N_2},$$
 (5)


где

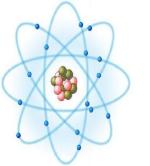
 $N_{\rm J}$ — число ядер делящегося компонента в единице объема среды ($^{235}{
m U},\,^{233}{
m U}$ или Pu);

 N_2 - число ядер сырьевого компонента в единице объема среды (238 U, 232 Th).

Из (5) следует, что

$$\frac{N_1}{N_2} = \frac{\beta}{1 - \beta},\tag{6}$$

а разбавление, т.е. отношение числа ядер замедлителя к числу ядер горючего


$$\alpha = \frac{N_{3}}{N_{2}} = \frac{N_{3}}{N_{1} + N_{2}}.$$
 (7)

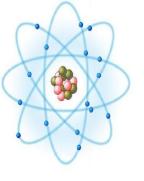
Отсюда

$$\frac{N_{_{3}}}{N_{_{1}}} = \frac{\alpha}{\beta}.$$
 (8)

Объём, занимаемый всеми компонентами активной зоны в единице объёма смеси должен быть равен единице

$$V_1 + V_2 + V_3 = 1 (9)$$

ИЛИ


$$\frac{N_1}{N_0} \cdot \frac{A_1}{\rho_1} + \frac{N_2}{N_0} \cdot \frac{A_2}{\rho_2} + \frac{N_3}{N_0} \cdot \frac{A_3}{\rho_3} = 1, \qquad (10)$$

$$\frac{N_1}{N_0} \cdot \left(\frac{A_1}{\rho_1} + \frac{1 - \beta}{\beta} \cdot \frac{A_2}{\rho_2} + \frac{\alpha}{\beta} \cdot \frac{A_3}{\rho_3} \right) = 1. \tag{11}$$

Здесь N_0 — число Авогадро; A_i и N_i — молярная масса и число ядер соответствующего компонента в единице объема.

$$N_{1} = \frac{N_{0}}{\frac{A_{1}}{\rho_{1}} + \frac{1 - \beta}{\beta} \cdot \frac{A_{2}}{\rho_{2}} + \frac{\alpha}{\beta} \cdot \frac{A_{3}}{\rho_{3}}}.$$
 (12)

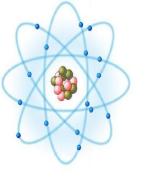
$$N_2 = N_1 \cdot \frac{1 - \beta}{\beta}. \tag{13}$$

$$N_3 = \alpha \cdot (N_1 + N_2). \tag{14}$$

Для расчета чисел ядер можно воспользоваться электронной таблицей (файл «Число_ядер»).

Расчет макросечений проводится по формуле (4).

Расчет других макроконстант


Для расчета *макросечения увода* в методичке имеется две формулы — (2.13) и (2.15). Следует пользоваться формулой (2.15). Если в состав реактора входит вода, то следует вычислять макроскопические матрицы упругого и неупругого рассеяния.

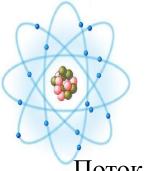
Для расчета элементов *9-группового спектра деления* применяется суммирование элементов 26-группового спектра. Например, для первой и второй групп 9-групповой системы констант можно записать

$$\chi_9^1 = \chi_{26}^1 + \chi_{26}^2 + \chi_{26}^3 + \chi_{26}^4,$$

$$\chi_9^2 = \chi_{26}^5 + \chi_{26}^6 + \chi_{26}^7.$$

4. Расчет потоков и ценностей

Потоки и ценности вычисляются по формулам (1.10) и (1.11) методички.


$$\Psi_{fa}^{j} \cdot \Sigma_{fa}^{j} + \sum_{l=j+1}^{m} \Sigma_{a}^{j \to l} \cdot \Phi_{a0}^{*l} \\
\Phi_{a0}^{*j} = \frac{\sum_{l=j+1}^{j} \Sigma_{a}^{j} \cdot \Phi_{a0}^{*l}}{\sum_{vea}^{j}}.$$
(1.11)

 χ_{a0}^{j} И V_{fa}^{j} - соответственно доля нейтронов j-й группы в спектре деления и число нейтронов, образующееся при делении.

Распишем эти формулы для трех начальных групп нейтронов. Поток для первой группы

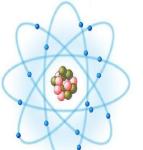
$$\Phi_{a0}^1 = \frac{\chi_a^1}{\Sigma_{_{VBa}}^1}$$

4. Расчет потоков и ценностей

Поток для второй группы

$$\Phi_{a0}^{2} = \frac{\chi_{a}^{2} + \sum_{a}^{1 \to 2} \Phi_{a0}^{1}}{\sum_{vea}^{2}}.$$

Поток для третьей группы


$$\Phi_{a0}^{3} = \frac{\chi_{a}^{3} + \sum_{a}^{1 \to 3} \Phi_{a0}^{1} + \sum_{a}^{2 \to 3} \Phi_{a0}^{2}}{\sum_{vea}^{2}}.$$

Расчет ценностей начинаем с последней группы

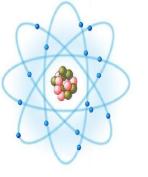
$$\Phi_{a0}^{*9} = \frac{v_{fa}^9 \cdot \sum_{fa}^9}{\sum_{yea}^9}.$$

4. Расчет потоков и ценностей

Ценность для восьмой группы

$$\Phi_{a0}^{*8} = \frac{\nu_{fa}^{8} \cdot \Sigma_{fa}^{8} + \Sigma_{a}^{8 \to 9} \cdot \Phi_{a0}^{*8}}{\Sigma_{vea}^{8}}.$$

Ценность для седьмой группы


$$\Phi_{a0}^{*7} = \frac{v_{fa}^{7} \cdot \sum_{fa}^{7} + \sum_{a}^{7 \to 8} \cdot \Phi_{a0}^{*8} + \sum_{a}^{7 \to 9} \cdot \Phi_{a0}^{*9}}{\sum_{vea}^{7}}.$$

Важно отметить, что в сечения межгрупповых переходов, входящие в эти формулы, должны входить сечения замедления. Например,

$$\sum_{a}^{7\to8} = \sum_{in}^{78} + \sum_{3}^{7} (e).$$

Расчет эффективных одногрупповых констант

Одногрупповые константы вычисляются по формулам (1.24), (1.25) и (1.26) из методички

$$D_{a} = \frac{\sum_{l=1}^{m} D_{a}^{l} \cdot \Phi_{a}^{l} \cdot \Phi_{a}^{*l}}{\sum_{l=1}^{m} \Phi_{a}^{l} \cdot \Phi_{a}^{*l}} \qquad \qquad \sum_{aa} = \frac{\sum_{j=1}^{m} \Phi_{a}^{*j} \cdot (\sum_{y \in a}^{j} \cdot \Phi_{a}^{j} - \sum_{l=1}^{j-1} \sum_{a}^{l \to j} \cdot \Phi_{a}^{l})}{\sum_{j=1}^{m} \Phi_{a}^{j} \cdot \Phi_{a}^{*j}}$$

$$v_{fa} \cdot \Sigma_{fa} = \frac{\sum_{j=1}^{m} \chi_{a}^{j} \cdot \Phi_{a}^{*j} \cdot \sum_{j=1}^{m} v_{fa}^{j} \cdot \Sigma_{fa}^{j} \cdot \Phi_{a}^{j}}{\sum_{j=1}^{m} \Phi_{a}^{j} \cdot \Phi_{a}^{*j}}$$

Критический радиус находим из условия равенства геометрического и материального параметров

$$\frac{\pi^2}{R_{\kappa p}^2} = \frac{v_{fa} \cdot \Sigma_{fa} - \Sigma_{aa}}{D_a}.$$

