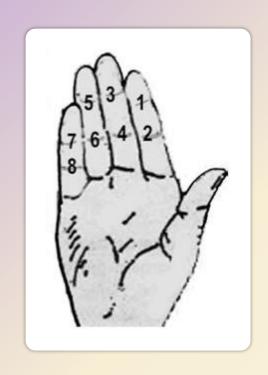


История счета и систем


CITIACHOITIAG

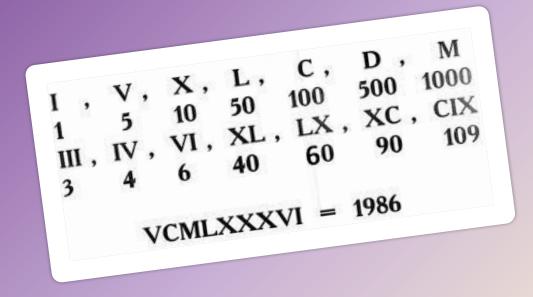
Современный человек в повседневной жизни постоянно сталкивается с числами: мы запоминаем номера автобусов и телефонов, в магазине подсчитываем стоимость покупок, ведём свой семейный бюджет в рублях и копейках (сотых долях рубля) и т.д. Числа, цифры... они с нами везде.

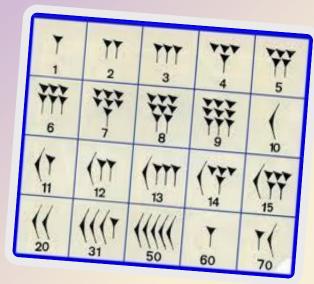
· AO 365 78.

Люди научились считать еще в незапамятные времена. Сначала они просто различали один предмет перед ними или нет. Если предмет был не один, то говорили «много». Постепенно появилось спородия обозначения прух предметов

Что такое системы счисления?

Система счисления- это совокупность приемов и правил для обозначения и именования





непозиционн ые

Позиционн

В позиционных системах счисления количество, обозначаемое цифрой в числе, зависит от ее позиции, а в непозиционных – нет. Например: 11 – здесь первая единица обозначает десять, а вторая – 1.

II – здесь обе единицы обозначают единицу.

Непозиционн

Непозиционная система с поления - это система счисления, в которой значение цифры не изменяется в зависимости от ее расположения.

Примером непозиционной системы счисления служит римская система, которой вместо цифр используются латинские буквы.

Например: Число 242 можно записать ССХLII (т.е. 100+100+(50-10+1+1).

Десятичная система счисления — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем. В ней используются цифры 1, 2, 3,4, 5, 6, 7, 8, 9, 0, называемые арабскими пифрами. Прелполагается, 01234 56789

Двоичная система счисления — позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех

современных компьютерах и

Перевод чисел из десятичной системы счисления в любую другую

Для того, чтобы перевести число из десятичной системы счисления, в любую другую, нужно выполнять целочисленное деление исходного числа на основание той системы счисления, в которую нужно перевести число. Частное нужно делить на основание до тех пор, пока не останется 0. После этого все остатки нужно выписать в обратном порядке - это и будет число в новой системе

СПИСПОНИЯ

Например, перевод - числа 25 из десятичной системы счисления в двоичную будет выглядеть следующим образом:

Системы счисления и их

основания

Система счисления	Основание	Алфавит цифр
Десятичная	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Двоичная	2	0, 1
Восьмеричная	8	0, 1, 2, 3, 4, 5, 6, 7
Шестнадцатерич ная	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(10), B(11), C(12), D(13), E(14), F(15)