
1

Microprocessor-Based Systems

Dr. Sadr
Yazd University

Instruction Set Architecture
Assembly Language Programming
Software Development Toolchain
Application Binary Interface (ABI)

This week…

Finish ARM assembly example from last time

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)

2

Assembly example

data:
 .byte 0x12, 20, 0x20, -1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top: ldrb r2, [r1],#1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #4
 bne top

3

Instructions used

• mov
– Moves data from register or immediate.
– Or also from shifted register or immediate!

• the mov assembly instruction maps to a bunch of
different encodings!

– If immediate it might be a 16-bit or 32-bit instruction
• Not all values possible
• why? (not greater than 232-1)

• movw
– Actually an alias to mov

• “w” is “wide”
• hints at 16-bit immediate

4

From the ARMv7-M Architecture Reference Manual

5

There are similar entries for
move immediate, move shifted
(which actually maps to different
instructions) etc.

ARM and Thumb Encodings:
• Encoding T 🡪 Thumb encoding.
• Different processors have different encodings for a single

instruction leading to several encodings, A1, A2, T1, T2,

• The Thumb instruction set:
• Each Thumb instruction is either a single 16-bit halfword, or a 32-bit

instruction consisting of two consecutive halfwords, and have a
corresponding 32-bit ARM instruction that has the same effect on the
processor model.

• Thumb instructions operate with the standard ARM register
configuration, allowing excellent interoperability between ARM and
Thumb states.

• On execution, 16-bit Thumb instructions are decompressed to full
32-bit ARM instructions in real time, without performance loss.

• Thumb code is typically 65% of the size of ARM code, and provides
160% of the performance of ARM code when running from a 16-bit
memory system. Thumb, therefore, makes the corresponding core
ideally suited to embedded applications with restricted memory
bandwidth, where code density and footprint is important.

• The different encoding of the same instructions of which one is
ARM and another is Thumb would come from the encoding policy.

6

Directives

• #:lower16:data
– What does that do?
– Why?

• Note:
– “data” is a label for a memory address!

7

8

Loads!

• ldrb -- Load register byte
– Note this takes an 8-bit value and moves it into a 32-bit

location!
• Zeros out the top 24 bits

• ldrsb -- Load register signed byte
– Note this also takes an 8-bit value and moves it into a

32-bit location!
• Uses sign extension for the top 24 bits

9

Addressing Modes
• Offset Addressing

– Offset is added or subtracted from base register
– Result used as effective address for memory access
– [<Rn>, <offset>]

• Pre-indexed Addressing
– Offset is applied to base register
– Result used as effective address for memory access
– Result written back into base register
– [<Rn>, <offset>]!

• Post-indexed Addressing
– The address from the base register is used as the EA
– The offset is applied to the base and then written back
– [<Rn>], <offset>

So what does the program _do_?
data:
 .byte 0x12, 20, 0x20, -1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top: ldrb r2, [r1],#1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #4
 bne top
• CMP Rn, Operand2 :

• Compare the value in a register with Operand2 and update the
condition flags on the result, but do not place the result in
any register.

• Condition flags 🡪 These instructions update the N, Z, C and V
flags according to the result.

• The CMP instruction subtracts the value of Operand2 from the
value in Rn. This is the same as a SUBS instruction, except
that the result is discarded.

• BNE (branch if not equal) 🡪 cmp comes before branch operations
• bne top 🡪 jump to label “top” if r0 not equal to 4

11

This Week…

Finish ARM assembly example from last time

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)

12

13

An ISA defines the hardware/software interface

• A “contract” between architects and programmers

• Register set

• Instruction set
– Addressing modes
– Word size
– Data formats
– Operating modes
– Condition codes

14

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

15

ARM Cortex-M3 ISA

Register Set Address Space

Branching
Data processing

Load/Store
Exceptions

Miscellaneous

Instruction Set

32-bits 32-bits

Endianess Endianess

16

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

Word Size

• Perhaps most defining feature of an architecture
– IA-32 (Intel Architecture, 32-bit)

• Word size is what we’re referring to when we say
– 8-bit, 16-bit, 32-bit, or 64-bit machine, microcontroller,

microprocessor, or computer

• Determines the size of the addressable memory
– A 32-bit machine can address 2^32 bytes
– 2^32 bytes = 4,294,967,296 bytes = 4GB
– Note: just because you can address it doesn’t mean that

there’s actually something there!

• In embedded systems, tension between 8/16/32 bits
– Code density/size/expressiveness
– CPU performance/addressable memory

Word Size 🡪 32-bit ARM Architecture

• ARM’s Thumb-2 adds 32-bit instructions to 16-bit ISA
• Balance between 16-bit density and 32-bit performance

Course Focus

A quick comment on the ISA:
From: ARMv7-M Architecture Reference Manual

19

20

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

21

ARM Cortex-M3 Registers

• R0-R12
– General-purpose registers
– Some 16-bit (Thumb)

instruction only access R0-R7

• R13 (SP, PSP, MSP)
– Stack pointer(s)
– More details on next slide

• R14 (LR)
– Link Register
– When a subroutine is called,

return address kept in LR

• R15 (PC)
– Holds the currently executing

program address
– Can be written to control

program flow

22
Mode dependent

ARM Cortex-M3 Registers

Main SP (MSP) used
by:
- OS kernel
- Exception handlers
- App code w/

privileded access

Process SP (PSP) used
by:
- Base app code

(when not running
an exception
handler)

Note: there are two stack pointers!

• The Stack is a memory region within the program/process. This part of the
memory gets allocated when a process is created. We use Stack for storing
temporary data (local variables/environment variables)

• When the processor pushes a new item onto the stack, it decrements the stack
pointer and then writes the item to the new memory location.

• The processor implements two stacks, the main stack and the process stack,
with a pointer for each held in independent registers

• When an application is started on an operating system and a process is created,
MSP mostly used by OS kernel itself but PSP is mostly by application itself.

23

ARM Cortex-M3 Registers
• xPSR

– Program Status Register
– Provides arithmetic and logic processing flags
– We’ll return to these later

• PRIMASK, FAULTMASK, BASEPRI
– Interrupt mask registers
– PRIMASK: disable all interrupts except NMI and hard fault
– FAULTMASK: disable all interrupts except NMI
– BASEPRI: Disable all interrupts of specific priority level or lower
– We’ll return to these during the interrupt lectures

• CONTROL (control register)
– Define priviledged status and stack pointer selection (PSP, MSP)
– The CONTROL register is one of the special registers implemented

in the Cortex-M processors. This can be accessed using MSR and
MRS instructions.

24

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

25

ARM Cortex-M3 Address Space / Memory Map

Unlike most previous ARM cores, the overall layout of the memory map of a device based
around the Cortex-M3 is fixed. This allows easy porting of software between different
systems based on the Cortex-M3. The address space is split into a number of different
sections.

26

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

The endianess religious war: 289 years and counting!

• Modern version
– Danny Cohen
– IEEE Computer, v14, #10
– Published in 1981
– Satire on CS religious war

• Historical Inspiration
– Jonathan Swift
– Gulliver's Travels
– Published in 1726
– Satire on Henry-VIII’s split

with the Church
• Now a major motion picture!

27

 Memory Value
 Offset (LSB) (MSB)
 ====== ===========
uint8_t a = 1; 0x0000 01 02 FF 00
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678; 0x0004 78 56 34 12

• Little-Endian
– LSB is at lower address

• Big-Endian
– MSB is at lower address

 Memory Value
 Offset (LSB) (MSB)
 ====== ===========
uint8_t a = 1; 0x0000 01 02 00 FF
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678; 0x0004 12 34 56 78

Endian-ness
• Endian-ness includes 2 types 🡪

– Little endian : Little endian processors order bytes in memory with the least
significant byte of a multi-byte value in the lowest-numbered memory location.

– Big endian : Big endian architectures instead order them with the most significant byte
at the lowest-numbered address.

• The x86 architecture as well as several 8-bit architectures are little
endian.

• Most RISC architectures (SPARC, Power, PowerPC, MIPS) were originally big
endian (ARM was little endian), but many (including ARM) are now
configurable.

• Endianness only applies to processors that allow individual addressing of
units of data (such as bytes) that are smaller than the basic addressable
machine word.

• RISC 🡪 Reduced Instruction Set Computer (exp. ARM)
• CISC 🡪 Complex Instruction Set Computer (x86 processors in most PCs)
• Processors that have a RISC architecture typically require fewer transistors

than those with a CISC architecture which improves cost, power
consumption, and heat dissipation.

Addressing: Big Endian vs Little Endian

• Endian-ness: ordering of bytes within a word
– Little - increasing numeric significance with increasing

memory addresses
– Big – The opposite, most significant byte first
– MIPS is big endian, x86 is little endian

ARM Cortex-M3 Memory Formats (Endian)

• Default memory format for ARM CPUs: LITTLE ENDIAN

• Processor contains a configuration pin BIGEND
– Enables hardware system developer to select format:

• Little Endian
• Big Endian (BE-8)

– Pin is sampled on reset
– Cannot change endianness when out of reset

• Source: [ARM TRM] ARM DDI 0337E, “Cortex-M3 Technical
Reference Manual,” Revision r1p1, pg 67 (2-11).

30

31

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

Instruction encoding

• Instructions are encoded in machine language opcodes
• Sometimes

– Necessary to hand generate opcodes
– Necessary to verify if assembled code is correct

• How? Refer to the “ARM ARM”

Instructions
movs r0, #10

movs r1, #0

AR
M

v7
 A

RM

Register Value Memory Value
001|00|000|00000010 (LSB) (MSB)
(msb) (lsb) 0a 20 00 21
001|00|001|00000000

33

Instruction Encoding
ADD immediate

34

35

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

Addressing Modes

• Offset Addressing
– Offset is added or subtracted from base register
– Result used as effective address for memory access
– [<Rn>, <offset>]

• Pre-indexed Addressing
– Offset is applied to base register
– Result used as effective address for memory access
– Result written back into base register
– [<Rn>, <offset>]!

• Post-indexed Addressing
– The address from the base register is used as the EA
– The offset is applied to the base and then written back
– [<Rn>], <offset>

<offset> options

• An immediate constant
– #10

• An index register
– <Rm>

• A shifted index register
– <Rm>, LSL #<shift>

• Lots of weird options…

38

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

39

Branch

Range 🡨 offset range
BL 🡨 Branch with link (copy the address of the next instruction into lr)
BLX 🡨 Branch with link, and exchange instruction set (X for exchange to Thumb/ARM)
TBB [R0, R1] ; R1 is the index, R0 is the base address of the branch table 🡨 branch to the
R1th element of the table starting at R0 address

Branch examples

• b target
– Branch without link (i.e. no possibility of return) to target
– The PC is not saved!

• bl func
– Branch with link (call) to function func
– Store the return address in the link register (lr)

• bx lr (Branch and exchange)
– Use to return from a function
– Moves the lr value into the pc
– Could be a different register than lr as well

• blx reg (Branch with Link and exchange)
– Branch to address specified by reg
– Save return address in lr
– When using blx, makre sure lsb of reg is 1 (otherwise, the CPU

will fault b/c it’s an attempt to go into the ARM state)
40

Branch examples (2)

• blx label
– Branch with link and exchange state. With immediate

data, blx changes to ARM state. But since CM-3 does
not support ARM state, this instruction causes a fault!

• mov r15, r0
– Branch to the address contained in r0

• ldr r15, [r0]
– Branch to the to address in memory specified by r0

• Calling bl overwrites contents of lr!
– So, save lr if your function needs to call a function!

41

42

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

43

Data processing instructions

•ADR PC, imm 🡪 The assembler generates an instruction that adds or subtracts a value to the PC.
•CMP{cond} Rn, Operand2 (Rn-Operand2)
•CMN{cond} Rn, Operand2 (Rn+Operand2)
•The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS instruction, except that the
result is discarded.

•The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS instruction, except that the result
is discarded.

Many, Many More!

44

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

45

Load/Store instructions

Exclusive access is for when a memory is shared between some processors. When making access as
exclusive, it means only letting 1 processor to access that.

An application running unprivileged:
• means only OS can allocate system resources to the application, as either private or shared resources
• provides a degree of protection from other processes and tasks, and so helps protect the operating
system from malfunctioning applications.

46

Miscellaneous instructions

For example:
CLREX 🡨 clear the local record of the executing processor that an address has had a request for an
exclusive access.
DMB 🡨 Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that
appear in program order before the DMB instruction are observed before any explicit memory accesses
that appear in program order after the DMB instruction. It does not affect the ordering of any other
instructions executing on the processor.
.
.

47

ARMv7-M
Architecture
Reference Manual
ARMv7-M_ARM.pdf

48

Major elements of an Instruction Set Architecture
(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #4

 ldr r1, [r0,#8]

 r1=mem((r0)+8)

 bne loop

 subs r2, #1

Endianess

Application Program Status Register (APSR)

49

Updating the APSR

• SUB Rx, Ry
– Rx = Rx - Ry
– APSR unchanged

• SUBS
– Rx = Rx - Ry
– APSR N, Z, C, V updated

• ADD Rx, Ry
– Rx = Rx + Ry
– APSR unchanged

• ADDS
– Rx = Rx + Ry
– APSR N, Z, C, V updated

50

Overflow and carry in APSR

unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);

signed_sum = SInt(x) + SInt(y) + UInt(carry_in);

result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0>

carry_out = if UInt(result) == unsigned_sum then ’0’ else ’1’;

overflow = if SInt(result) == signed_sum then ’0’ else ’1’;

51

Conditional execution:

52

- EQ, NE, … are suffixes that add to other instructions (B+NE=BNE, ADDS+CS=ADDCS, …) and check
their corresponding condition flags which make the original instruction conditional.
- Most ARM /Thumb instructions can be executed conditionally, based on the values of the APSR condition
flags.
- The type of instruction that last updated the flags in the APSR determines the meaning of condition codes.

IT blocks

• Conditional execution in C-M3 done in “IT” block
• IT [T|E]*3
• More on this later…

53

Conditional Execution on the ARM

• ARM instruction can include conditional suffixes, e.g.
– EQ, NE, GE, LT, GT, LE, …

• Normally, such suffixes are used for branching (BNE)
• However, other instructions can be conditionally executed

– They must be inside of an IF-THEN block
– When placed inside an IF-THEN block

• Conditional execution (EQ, NE, GE,… suffix) and
• Status register update (S suffix) can be used together

– Conditional instructions use a special “IF-THEN” or “IT” block

• IT (IF-THEN) blocks
– Support conditional execution (e.g. ADDNE)
– Without a branch penalty (e.g. BNE)
– For no more than a few instructions (i.e. 1-4)

54

Conditional Execution using IT Instructions

• In an IT block
– Typically an instruction that updates the status register is exec’ed
– Then, the first line of an IT instruction follows (of the form ITxyz)

• Where each x, y, and z is replaced with “T”, “E”, or nothing (“”)
• T’s must be first, then E’s (between 1 and 4 T’s and E’s in total)
• Ex: IT, ITT, ITE, ITTT, ITTE, ITEE, ITTTT, ITTTE, ITTEE, ITEEE

– Followed by 1-4 conditional instructions
• where # of conditional instruction equals total # of T’s & E’s

IT<x><y><z> <cond> ; IT instruction (<x>, <y>,
; <z> can be “T”, “E” or “”)

instr1<cond> <operands> ; 1st instruction (<cond>
; must be same as IT)

instr2<cond or not cond> <operands> ; 2nd instruction (can be
; <cond> or <!cond>

instr3<cond or not cond> <operands> ; 3rd instruction (can be
; <cond> or <!cond>

instr4<cond or not cond> <operands> ; 4th instruction (can be
; <cond> or <!cond>

55Source: Joseph Yiu, “The Definitive Guide to the ARM Cortex-M3”, 2nd Ed., Newnes/Elsevier, © 2010.

Example of Conditional Execution using IT Instructions

IT<x><y><z> <cond> ; IT instruction (<x>, <y>,
; <z> can be “T”, “E” or “”)

instr1<cond> <operands> ; 1st instruction (<cond>
; must be same as IT)

instr2<cond or not cond> <operands> ; 2nd instruction (can be
; <cond> or <!cond>

instr3<cond or not cond> <operands> ; 3rd instruction (can be
; <cond> or <!cond>

instr4<cond or not cond> <operands> ; 4th instruction (can be
; <cond> or <!cond>

CMP r1, r2 ; if r1 < r2 (less than, or LT)
ITTEE LT ; then execute 1st & 2nd instruction

; (indicated by 2 T’s)
; else execute 3rd and 4th instruction
; (indicated by 2 E’s)

SUBLT r2, r1 ; 1st instruction
LSRLT r2, #1 ; 2nd instruction
SUBGE r1, r2 ; 3rd instruction (GE opposite of LT)
LSRGE r1, #1 ; 4th instruction (GE opposite of LT)

56Source: Joseph Yiu, “The Definitive Guide to the ARM Cortex-M3”, 2nd Ed., Newnes/Elsevier, © 2010.

57

The ARM architecture “books” for this class

58

...
start:

movs r0, #1
movs r1, #1
movs r2, #1
sub r0, r1
bne done
movs r2, #2

done:
b done

...

Exercise:
What is the value of r2 at done?

59

...
start:

movs r0, #1 // r0 🡨 1, Z=0
movs r1, #1 // r1 🡨 1, Z=0
movs r2, #1 // r2 🡨 1, Z=0
sub r0, r1 // r0 🡨 r0-r1

// but Z flag untouched
// since sub vs subs

bne done // NE true when Z==0
// So, take the branch

movs r2, #2 // not executed
done:

b done // r2 is still 1
...

Solution:
What is the value of r2 at done?

Today…

Finish ARM assembly example from last time

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)

60

61

The ARM software tools “books” for this class

62

How does an assembly language program
get turned into an executable program image?

Assembly
files (.s)

Object
files (.o)

as
(assembler)

ld
(linker)

Memory
layout

Linker
script (.ld)

Executable
image file

Binary program
file (.bin)

Disassembled
code (.lst)

ob
jc
op
y

objdump

63

What are the real GNU executable names for the ARM?

• Just add the prefix “arm-none-eabi-” prefix
• Assembler (as)

– arm-none-eabi-as

• Linker (ld)
– arm-none-eabi-ld

• Object copy (objcopy)
– arm-none-eabi-objcopy

• Object dump (objdump)
– arm-none-eabi-objdump

• C Compiler (gcc)
– arm-none-eabi-gcc

• C++ Compiler (g++)
– arm-none-eabi-g++

Tools Tutorial: The GNU Linker
http://web.eecs.umich.edu/~prabal/teaching/resources/eecs373/Linker.pdf

Real-world example

• To the terminal! Example code online:
https://github.com/brghena/eecs373_toolchain_examples)

• First, get the code. Open a shell and type:
$ git clone https://github.com/brghena/eecs373_toolchain_examples

• Next, find the example and look at the Makefile and .s
$ cd eecs373_toolchain_examples/example
$ cat Makefile
$ cat example.s

• Assemble the code* and look at the .lst, .o, .out files
$ make
$ cat example.lst
$ hexdump example.o
$ hexdump example.out

64

* You’ll need to have the tools installed. Two useful links:
https://launchpad.net/gcc-arm-embedded/+download
http://web.eecs.umich.edu/~prabal/teaching/resources/eecs373/Linker.pdf

65

$ arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

How are assembly files assembled?

• $ arm-none-eabi-as
– Useful options

• -mcpu
• -mthumb
• -o

66

example.bin : example.o
arm-none-eabi-ld example.o -Ttext 0x0 -o example.out
arm-none-eabi-objdump -S example.out > example.lst
arm-none-eabi-objcopy -Obinary example.out example.bin

example.o : example.s
arm-none-eabi-as example.s -o example.o

clean :
rm -f *.o
rm -f *.out
rm -f *.bin
rm -f *.lst

A simple Makefile example

Target
Dependencies

Actions

67

.equSTACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start

start:
movs r0, #10
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne loop

deadloop:
b deadloop
.end

A “real” ARM assembly language program for GNU

68

.equSTACK_TOP, 0x20000800 /* Equates symbol to value */

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol */
/* _start label is the beginning
 ...of the program region */

.type start, %function /* Specifies start is a function */
/* start label is reset handler */

_start:
.word STACK_TOP, start /* Inserts word 0x20000800 */

/* Inserts word (start) */
start:

movs r0, #10 /* We’ve seen the rest ... */
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne loop

deadloop:
b deadloop
.end

What’s it all mean?

69

What information does the disassembled file provide?

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start

start:
movs r0, #10
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne loop

deadloop:
b deadloop
.end

example1.out: file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:
 0: 20000800 .word 0x20000800
 4: 00000009 .word 0x00000009

00000008 <start>:
 8: 200a movs r0, #10
 a: 2100 movs r1, #0

0000000c <loop>:
 c: 1809 adds r1, r1, r0
 e: 3801 subs r0, #1
 10: d1fc bne.n c <loop>

00000012 <deadloop>:
 12: e7fe b.n 12 <deadloop>

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o
arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o
arm-none-eabi-objcopy -Obinary example1.out example1.bin
arm-none-eabi-objdump -S example1.out > example1.lst

Linker script that puts all the code in the right places

OUTPUT_FORMAT("elf32-littlearm")
OUTPUT_ARCH(arm)
ENTRY(main)

MEMORY
{
 /* SmartFusion internal eSRAM */
 ram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k
}

SECTIONS
{
 .text :
 {
 . = ALIGN(4);
 (.text)

. = ALIGN(4);
 _etext = .;
 } >ram
}
end = .;

• Specifies little-endian arm in ELF format
• Specifies ARM CPU
• Start executing at label named “main”

• We have 64k of memory starting at
0x20000000. You can read, write and
execute out of it. We named it “ram”

• “.” is a reference to the current memory
location

• First align to a word (4 byte) boundary
• Place all sections that include .text at

the start (* here is a wildcard)
• Define a label named _etext to be the

current address.
• Put it all in the memory location defined

by the ram symbol’s location.

70

More info: The GNU Linker
http://web.eecs.umich.edu/~prabal/teaching/resources/eecs373/Linker.pdf

71

How does a mixed C/Assembly program
get turned into a executable program image?

Assembly
files (.s)

Object
files (.o)

as
(assembler)

gcc
(compile
+ link)

Memory
layout

Linker
script (.ld)

Executable
image file

Binary program
file (.bin)

Disassembled
Code (.lst)

ob
jc
op
y

objdump

ld
(linker)

Library object
files (.o)

C files (.c)

Real-world example: Mixing C and assembly code

• To the terminal again! Example code online:
https://github.com/brghena/eecs373_toolchain_examples
$ git clone https://github.com/brghena/eecs373_toolchain_examples

• Inline assembly
$ cd eecs373_toolchain_examples/inline_asm
$ cat cfile.c

• Separate C and assembly
$ cd eecs373_toolchain_examples/inline_asm
$ cat asmfile.s
$ cat cfile.c

72

* You’ll need to have the tools installed. Two useful links:
https://launchpad.net/gcc-arm-embedded/+download
http://web.eecs.umich.edu/~prabal/teaching/resources/eecs373/Linker.pdf

Today…

Finish ARM assembly example from last time

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)

73

When is this relevant?

• The ABI establishes caller/callee responsibilities
– Who saves which registers
– How function parameters are passed
– How return values are passed back

• The ABI is a contract with the compiler
– All assembled C code will follow this standard

• You need to follow it if you want C and Assembly
to work together correctly

74

75
Source: Procedure Call Standard for the ARM Architecture
http://web.eecs.umich.edu/~prabal/teaching/resources/eecs373/ARM-AAPCS-EABI-v2.08.pdf

From the Procedure Call Standard

ABI Basic Rules

1. A subroutine must preserve the contents of the
registers r4-11 and SP
– These are the callee save registers
– Let’s be careful with r9 though

2. Arguments are passed though r0 to r3
– These are the caller save registers
– If we need more arguments, we put a pointer into

memory in one of the registers
• We’ll worry about that later

3. Return value is placed in r0
– r0 and r1 if 64-bits

4. Allocate space on stack as needed. Use it as
needed. Put it back when done…
– Keep things word aligned*

76

Let’s write a simple ABI routine

• int bob(int a, int b)
– returns a2 + b2

• Instructions you might need
– add adds two values
– mul multiplies two values
– bx branch to register

Other useful facts
• Stack grows down.

– And pointed to by “sp”

• Return address is held in “lr”

77

78

Questions?

Comments?

Discussion?

