Microprocessor-Based Systems

Dr. Sadr _

Yazd University R1

R2

R3

R4

RS

Instruction Set Architecture =0

R7

Assembly Language Programming RS
Software Development Toolchain e
Application Binary Interface (ABI) R11
R12

R13 (SP)

R14 (LR)

R15 (PC)

xPSR

This week...

Finish ARM assembly example from last time

Assembly example

data:
.byte 0x12, 20, 0x20, -1

func:

mov r0, #O0

mov r4d, #0

movw rl, #:lowerl6:data

movt rl, #:upperl6:data
top: 1drb r2, [rl],#1

add r4, rd4, r2

add r0, r0, #1

cmp r0, #4

bne top

Instructions used

e MOV
- Moves data from register or immediate.
- Or also from shifted register or immediate!

« the mov assembly instruction maps to a bunch of
different encodings!

- If immediate it might be a 16-bit or 32-bit instruction
e Not all values possible
« why? (not greater than 232-1)

e MOVW
- Actually an alias to mov
® “W” .is “W.ide”
e hints at 16-bit immediate

From the ARMv7-M Architecture Reference Manual

A6.7.76 MOV (register)

Move (register) copies a value from a register to the destination register. It can optionally update the
condition flags based on the value.

Encoding T1

ARMv6-M, ARMv7-M

MON<c> <Rd>,<Rm>
1514513512500 510 9 8 6 574 3 2

If <Rd> and <Rm> both from RO-R7,
otherwise all versions of the Thumb ISA.
If <Rd> 1s the PC. must be outside or last in IT block

10

0100011 0|D

Rm

Rd

d = UInt(D:Rd);
if d == 15 & InITBlock() &% !'LastInITBlock() then UNPREDICTABLE;

Encoding T2
MOVS <Rd>,<Rm>

151413121110 9 8 7 6

m = UInt(Rm);

setflags = FALSE;

All versions of the Thumb ISA.
Hormmery LSL—RdsRn48)

54372

10

000

00

00000

Rm

Rd

d = UInt(Rd);
if InITBlock() then UNPREDICTABLE;

Encoding T3
MOV{S}<c>.W <Rd>,<Rm>

m = UInt(Rm);

setflags = TRUE;

ARMv7-M

Not permitted mside IT block

There are similar entries for
move immediate, move shifted
(which actually maps to different
instructions) etc.

151413121110 9 8 7 6
1

S 4:3 2.1 015141312:11:109 8 7 6 543210
1171 0110400 0|S|1 1 1 1[j@|0 0 O Rd 0 000 Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S = '1');
if setflags & (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;
if lsetflags & (d = 15 || m = 15 || (d = 13 && m == 13)) then UNPREDICTABLE;

ARM and Thumb Encodings:

e Encoding T o Thumb encoding.

o Different processors have different encodings for a single
instruction leading to several encodings, A1, A2, T1, T2,

e The Thumb instruction set:

 Each Thumb instruction is either a single 16-bit halfword, or a 32-bit
instruction consisting of two consecutive halfwords, and have a
corresponding 32-bit ARM instruction that has the same effect on the
processor model.

e Thumb instructions operate with the standard ARM register
configuration, allowing excellent interoperability between ARM and
Thumb states.

e« On execution, 16-bit Thumb instructions are decompressed to full
32-bit ARM instructions in real time, without performance loss.

« Thumb code is typically 65% of the size of ARM code, and provides
160% of the performance of ARM code when running from a 16-bit
memory system. Thumb, therefore, makes the corresponding core
ideally suited to embedded applications with restricted memory
bandwidth, where code density and footprint is important.

« The different encoding of the same instructions of which one is
ARM and another is Thumb would come from the encoding policy.

Directives

e #:1lowerl6:data
- What does that do?
- Why?

e Note:
- “data” is a label for a memory address!

A6.7.78 MOVT

Move Top wntes an immediate value to the top halfword of the destination register. It does not affect the

contents of the bottom halfword.

Encoding T1 ARMv7-M

MONT<c> <Rd>,#<immlb>
151413121110 9 8 7 6 5 4 3

21 01514131211109 8 7 6 5 4 3

2

1

0

EFY E LS T-0T ESN

mm4

0

mmm3

Rd

mm$

d = UInt(Rd); imml6 = imm4:i:imm3:imm8;
if d IN {13,15} then UNPREDICTABLE;
Assembler syntax

MWVT<o<apr Rd>, #<inmle>

where:

<C><Q> See Standard assembler syniax fields on page A6-7.

<Rd> Specifies the destination register.

<imm16> Specifies the immediate value to be wntten to <Rd>. It must be in the range 0-65535.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<31:16> = imm16;
// R[d]<15:8> unchanged

Loads!

e ldrb -- Load register byte

- Note this takes an 8-bit value and moves it into a 32-bit
location!

e Zeros out the top 24 bits

e ldrsb -- Load register sighed byte

- Note this also takes an 8-bit value and moves it into a
32-bit location!

o Uses sign extension for the top 24 bits

Addressing Modes

o Offset Addressing
- Offset is added or subtracted from base register
- Result used as effective address for memory access
- [<Rn>, <offset>]

e Pre-indexed Addressing

Offset is applied to base register

Result used as effective address for memory access

Result written back into base register

[<Rn>, <offset>]!

e Post-indexed Addressing
- The address from the base register is used as the EA
- The offset is applied to the base and then written back
- [<Rn>], <offset>

Instruction Effective Address (Final R1 value)

LDR R2, [RO] - Load R2 with the word pointed by RO

LDR RO, [R1, #20] R1+20 - loads RO with the word pointed at by R1+20

LDR RO, [R1, #4]! R1+4 - loads RO with the word pointed at by R1+4 ; then update the pointer by adding 4 to R1
LDR RO, [R1], #4 R1 - loads RO with the word pointed at by R1 ; then update the pointer by adding 4 to R1

So what does the program _do_?
data:
.byte 0x12, 20, 0x20, -1

func:

mov r0, #0

mov r4d, #0

movw rl, #:lowerl6:data

movt rl, #:upperl6:data
top: 1ldrb r2, [rl],#1

add r4, r4, r2

add r0, r0, #1

cmp r0, #4

bne top

e CMP Rn, Operand2

e Compare the value in a register with Operand2 and update the
condition flags on the result, but do not place the result in
any register.

¢ Condition flags [] These instructions update the N, Z, C and V
flags according to the result.

¢ The CMP instruction subtracts the value of Operand2 from the
value in Rn. This is the same as a SUBS instruction, except
that the result is discarded.

e BNE (branch if not equal) [cmp comes before branch operations

This Week...

Walk though of the ARM ISA

An ISA defines the hardware/software interface

o A “contract” between architects and programmers
o Register set

e Instruction set
- Addressing modes
- Word size
- Data formats
- Operating modes
- Condition codes

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

EZ -bits
OxFFFFFFFF

32-bits
. E—

RO

<€

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC
xPSR

Endigness

31 30 29 28 27 26

//:Lb§ rz:\;;f\\\\\

mov ro, #4

ldr rl, [ro,#8]

rl=mem((ro)+8)

bne loop

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

W

Code 0.5GB

Endianess

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

> N

Z

E

\7

Q

RESERVED

14

ARM Cortex-M3 ISA

Instruction Set

ADD Rd, Rn, <op2>

Branching
Data processing
Load/Store
Exceptions
Miscellaneous

Register Set

Address Space

RO

R1

System

R2

Private peripheral bus - External

R3

Private peripheral bus - Internal

R4

RS

R6

External device 1.0GB

R7

R8

R9

R10

External RAM 1.0GB

R11

R12

Peripheral ~ 0.5GB

R13 (SP)

R14 (LR)

SRAM 0.5GB

R15 (PC)

xPSR

Code 0.5GB

32-bits

P

Endianess

32-bits

Endianess

OXFFFFFFFF

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

iz -bits
OxFFFFFFFF

32-bits
e E—

RO

<€

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC
xPSR

Endigness

31 30 29 28 27 26

mov ro, #4

ldr rl, [ro,#8]

rl=mem((ro)+8)

bne loop

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

'/§Lb§ rz:\;z\\\\\

W

Code 0.5GB

Endianess

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

>N

Z

C1

\.’

Q

RESERVED

16

Word Size

Perhaps most defining feature of an architecture
- |A-32 (Intel Architecture, 32-bit)

Word size is what we’re referring to when we say
- 8-bit, 16-bit, 32-bit, or 64-bit machine, microcontroller,
microprocessor, or computer
Determines the size of the addressable memory
- A 32-bit machine can address 2”32 bytes
- 2732 bytes = 4,294,967,296 bytes = 4GB
- Note: just because you can address it doesn’t mean that
there’s actually something there!
In embedded systems, tension between 8/16/32 bits
- Code density/size/expressiveness
- CPU performance/addressable memory

Word Size o 32-bit ARM Architecture

« ARM’s Thumb-2 adds 32-bit instructions to 16-bit ISA
e Balance between 16-bit density and 32-bit performance

ARM Cortex-M Product Line

e I B RSN I |5 R

Digital Signal Control
Processor with DSP
I Accelerated SIMD

Performance efficiency Floating point

g Feature rich connectivity J

e o Course Focus
Qutstanding energy efficiency

A quick comment on the ISA:
From: ARMv7-M Architecture Reference Manual

A4.1

About the instruction set

ARMvV7-M supports a large number of 32-bit instructions that were introduced as Thumb-2 technology into
the Thumb instruction set. Much of the functionality available is identical to the ARM instruction set

supported alongside the Thumb instruction set in ARMv6T?2 and other ARMV7 profiles. This chapter
describes the functionality available in the ARMv7-M Thumb instruction set. and the Unified Assembler
Language (UAL) that can be assembled to either the Thumb or ARM instruction sets.

Thumb mstructions are either 16-bit or 32-bit. and are aligned on a two-byte boundary. 16-bit and 32-bit
mnstructions can be intermixed freely. Many common operations are most efficiently executed using 16-bit
mnstructions. However:

> Most 16-bit instructions can only access eight of the general purpose registers. RO-R7. These are
known as the low registers. A small number of 16-bit instructions can access the high registers.
R8-R15.

. Many operations that would require two or more 16-bit mstructions can be more efficiently executed
with a single 32-bit instruction.

The ARM and Thumb instruction sets are designed to inferwork freely. Because ARMv7-M only supports
Thumb mstructions, mterworking instructions in ARMv7-M must only reference Thumb state execution.
see ARMV7-M and interworking support for more details.

In addition. see:

- Chapter AS Thumb Instruction Set Encoding for encoding details of the Thumb instruction set
. Chapter A6 Thumb Instruction Details for detailed descriptions of the instructions.

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

EZ -bits
OxFFFFFFFF

32-bits

R1
R2
R3
R4
R5
R6
R7
R8
R9

R10

R11

R12
R13 (SP)
R14 (LR)

R15 (PC
xPSR

Endigness

—

31 30 29 28 27 26

'/§Lb§ rz:i;I\\\\\

mov ro, #4

ldr rl, [ro,#8]

rl=mem((ro)+8)

bne loop

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

W

Code 0.5GB

Endianess

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

N

Z

E

\.’

Q

RESERVED

20

ARM Cortex-M3 Registers

e« RO-R12
j RO - General-purpose registers
E; - Some 16-bit (Thumb)
| =3 instruction only access RO-R7
low registers < Eg . R1 3 (SP, PSP, MSP)
R6 - Stack pointer(s)
> 2; - More details on next slide
20 « R14 (LR)
nigh regisiers E}? - Link Register
\ R12 - When a subroutine is called,
R13 (SP) return address kept in LR
M . R15 (PC)
R15 (PC)
Erograntialus Regisher LS - Holds the currently executing

program address

- Can be written to control
program flow

ARM Cortex-M3 Registers

« The Stack is a memory region within the program/process. This part of the
memory gets allocated when a process is created. We use Stack for storing
temporary data (local variables/environment variables)

« When the processor pushes a new item onto the stack, it decrements the stack
pointer and then writes the item to the new memory location.

« The processor implements two stacks, the main stack and the process stack,
with a pointer for each held in independent registers

 When an application is started on an operating system and a process is created,
MSP mostly used by OS kernel itself but PSP is mostly by application itself.

Note: there are two stack pointers!

Process SP (PSP) used Main SP (MSP) used

by: by:
- Base app code - 0OS kernel
(when not running - Exception handlers
an exception - App code w/
handler) privileded access
4P

Mode dependent

ARM Cortex-M3 Registers
e XPSR

- Program Status Register
- Provides arithmetic and logic processing flags
- We’ll return to these later

« PRIMASK, FAULTMASK, BASEPRI

- Interrupt mask registers
PRIMASK: disable all interrupts except NMI and hard fault
FAULTMASK: disable all interrupts except NMI
BASEPRI: Disable all interrupts of specific priority level or lower
We’ll return to these during the interrupt lectures

e CONTROL (control register)

- Define priviledged status and stack pointer selection (PSP, MSP)

- The CONTROL register is one of the special registers implemented
in the Cortex-M processors. This can be accessed using MSR and
MRS instructions.

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits
. E—

RO

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC
xPSR

Endigness

2-bits

31 30 29 28 27 26

OxFFFFFFFF
| |
System

0xE0100000

Private peripheral bus - External
0xE0040000

mov r‘ e #4 Private peripheral bus - Internal
3 0xE0000000

External device 1.0GB
1dp r‘l) [r‘e’ #8] 0xA0000000

External RAM 1.0GB

rl=mem((ro)+8)

0x60000000

b n e 1 00 Peripheral ~ 0.5GB
p 0x40000000

/ SRAM 0.5GB
S u b S r. 2 #1 0x20000000

5

1 Code 0.5GB

0x00000000
ndianess
0

N

Z

E

\.’

Q

RESERVED

24

ARM Cortex-M3 Address Space / Memory Map

0xE0100000 OxFFFFFFFF
OXE00FF000 Sxoral P8 o
0XE0042000 = y
0xE0041000 TPIU 0xE0100000
0xE0040000 it Private peripheral bus - External
;:‘ 0xE0040000
0xE0040000 = Private peripheral bus - Internal
Reserved 0OxEOQ000000
0OxEOOOF000 scs
0xEOQOOEQODO e
0xE0003000 FPB External device 1.0GB
0xE0002000 DWT
0xEQ001000 ™
0xE0000000 0xA0000000
9X 44000000 External RAM 1.0GB
32MB Bit band alias
0x42000000 0x60000000
31MB ot
Peripheral :
0x40100000 : : kil
1MB Bit band region
0x40000000 i
0x24000000 T 0x40000000
32MB Bit band alias SRAM a5
0x22000000 0x20000000
31MB 0568
0x20100000 : . Cae '
0x20000000 1MB Bit band region
0x00000000

Unlike most previous ARM cores, the overall layout of the memory map of a device based
around the Cortex-M3 1s fixed. This allows easy porting of software between different
systems based on the Cortex-M3. The address space is split into a number of different
sections.

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

EZ -bits
OxFFFFFFFF

32-bits
. E—

RO

<€

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC
xPSR

Endigness

31 30 29 28 27 26

'/§Lb§ rz:i;I\\\\\

mov ro, #4

ldr rl, [ro,#8]

rl=mem((ro)+8)

bne loop

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

W

Code 0.5GB

Endianess

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

>N

Z

E

\?

Q

RESERVED

26

The endianess religious war: 289 years and counting!

e Modern version o Little-Endian
- Danny Cohen - LSB is at lower address
- |[EEE Computer, v14, #10 e (9
_ Published in 1981 vints t 2 = 1 ox0000 61 02 FF 00
- Satire on CS religious war |smsscs s oo
 Historical Inspiration « Big-Endian
- Jonathan Swift - MSB is at lower address
- Gulliver's Travels % r OFfoes (LsBy (MSB)
- Published in 1726 "= st -3 ox0000 61 02 60 FF
- Satire on Henry-VIIl's split wmeve o om0

with the Church
 Now a major motion picture!

Endian-ness

Endian-ness includes 2 types o

- Little endian : Little endian processors order bytes in memory with the least
significant byte of a multi-byte value in the lowest-numbered memory location.

- Big endian : Big endian architectures instead order them with the most significant byte
at the lowest-numbered address.

The x86 architecture as well as several 8-bit architectures are little
endian.

Most RISC architectures (SPARC, Power, PowerPC, MIPS) were originally big
endian (ARM was little endian), but many (including ARM) are now
configurable.

Endianness only applies to processors that allow individual addressing of
units of data (such as bytes) that are smaller than the basic addressable
machine word.

RISC o Reduced Instruction Set Computer (exp. ARM)
CISC o Complex Instruction Set Computer (x86 processors in most PCs)

Processors that have a RISC architecture typically require fewer transistors
than those with a CISC architecture which improves cost, power
consumption, and heat dissipation.

Addressing: Big Endian vs Little Endian

e Endian-ness: ordering of bytes within a word

- Little - increasing numeric significance with increasing
memory addresses

- Big - The opposite, most significant byte first
- MIPS is big endian, x86 is little endian

Register Register
Memory OAOBOCOD 0OAO0OBOCOD Memory
d. O.A - —>» a:|0D
a+1:10B | == » a+1:|0C
a+2:|0C | = » a+2:|0B
a+3:10D | = > a+3:/0A
. Big-endian Little-endian :

ARM Cortex-M3 Memory Formats (Endian)

e Default memory format for ARM CPUs: LITTLE ENDIAN

e Processor contains a configuration pin BIGEND
- Enables hardware system developer to select format:
o Little Endian
» Big Endian (BE-8)
- Pin is sampled on reset
- Cannot change endianness when out of reset

e Source: [ARM TRM] ARM DDI 0337E, “Cortex-M3 Technical
Reference Manual,” Revision r1p1, pg 67 (2-11).

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

EZ -bits
OxFFFFFFFF

32-bits
. E—

RO

<€

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC
xPSR

Endigness

31 30 29 28 27 26

'/ZLb§ rz:\;z\\\\\

mov ro, #4

ldr rl, [ro,#8]

rl=mem((ro)+8)

bne loop

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

W

Code 0.5GB

Endianess

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

>N

Z

E

\.’

Q

RESERVED

31

Instruction encoding

e Instructions are encoded in machine language opcodes

e Sometimes
- Necessary to hand generate opcodes
- Necessary to verify if assembled code is correct

e How? Refer to the “ARM ARM”

Instructions Register Value Memory Value
movs ro, #10 | |001|00|000|00000010
@a 20 660 21

movs rl, #0 001 |00|001 | 00000000

Encoding T1 All versions of the Thumb ISA.
é MOVS <Rd>,#<imm8> Qutside IT block.
<{| MOV<c> <Rd>,#<imm8> Inside IT block.
'; 15:14-13:-02:11 309 78 -7 65, 4:-3. 2 ¥ 0
=| |0 0 1({0 0| Rd imm§8
(a'd
< d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

Instruction Encoding
ADD immediate

Encoding T1 All versions of the Thumb ISA. Encoding T2 All versions of the Thumb ISA.

ADDS <Rd>,<Rn>,#<imm3> ADDS <Rdn>,#<imm8>

ADD<c> <Rd>,<Rn>,#<imm3> ADD<c> <Rdn>,#<imm8>

15°14°13:12-11.10:9 87265 4 3.2 1 0 | S o) by e B () 2R At N A R . T T Yved B

0 001 1|1(0] imm3 Rn Rd 0 0 1|1 O Rdn imm8
Encoding T3 ARMv7-M

ADD{S}<c>.W <Rd>,Rn>,E<const>

151413121110 9 8 7 6 5 4 3 2 1 01514131211109 8 7 6 5 4 3 2 1 0
1 114705 | 0| 00050 S Rn 0 imm3 Rd imm8
Encoding T4 ARMv7-M

ADDW<c> <Rd>,<Rn>,E<imml2>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1 1. AL #E] T 10 0040 Rn 0 imm3 Rd imm8

[~

A6.7.3 ADD (immediate)

This instruction adds an immediate value to a register value. and writes the result to the destination register.
It can optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb ISA.
ADDS <Rd>,<Rn>,#<imm3> Outside IT block.
ADD<C> <Rd>,<Rn>,#<imm3> Inside IT block.

151413121110 9 8 7 6 5 4 3 2 1 0
00O0|1 1|{1|0| imm3 Rn Rd

d - UInt(Rd); n = UInt(Rn); setflags - !InITBlock(); imm32 - ZeroExtend(imm3, 32);

Encoding T2 All versions of the Thumb ISA.

ADDS <Rdn>,#<imm8> Outside IT block.
ADD<C> <Rdn>,#<imm8> Inside IT block.
15141312 1110 9. 8 7 65 4 3 2 1 0

00 1(1 0| Rdn imm8

d - UInt(Rdn); n - UInt(Rdn); setflags - !InITBlock(); imm32 - ZeroExtend(imm8, 32);

Encoding T3 ARMv7-M
ADD{S}<c>.W <Rd>,<Rn>,#<const>

151413712 11.10::9:. .8 7 65 4.3 2. ¥ 0.151413.1211°10 9 8.°7:6. 5 4 32 £ 0
1 3% F 010 ¥ 0:0:0/S Rn 0| imm3 Rd imm$8

if Rd = "1111" && S = '1" then SEE (MN (immediate);

if Rn — "1101' then SEE ADD (SP plus immediate);

d - UInt(Rd); n = UInt(Rn); setflags = (S == '1"); imm32 - ThumbExpandImm(i:imm3:imm8);
if d IN {13,15} || n = 15 then UNPREDICTABLE;

Encoding T4 ARMv7-M
ADDW<C> <Rd>,<Rn>, #<imml12>

151413121110 9 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0

T A5 T 04k ¢ 0.:0:0:)0 Rn 0| imm3 Rd imm8

if Rn = "1111' then SEE ADR;

if Rn = "1101' then SEE ADD (SP plus immediate);

d - UInt(Rd); n = UInt(Rn); setflags - FALSE; imm32 - ZeroExtend(i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

EZ -bits
OxFFFFFFFF

32-bits
. E—

RO

<€

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC
xPSR

Endigness

31 30 29 28 27 26

'/§Lb§ rz:i;I\\\\\

mov ro, #4

ldr rl, [ro,#8]

rl=mem((ro)+8)

bne loop

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

W

Code 0.5GB

Endianess

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

>N

Z

E

\?

Q

RESERVED

35

Addressing Modes

e Offset Addressing
- Offset is added or subtracted from base register
- Result used as effective address for memory access
- [<Rn>, <offset>]

e Pre-indexed Addressing
Offset is applied to base register
Result used as effective address for memory access
Result written back into base register
[<Rn>, <offset>]!
e Post-indexed Addressing
- The address from the base register is used as the EA

- The offset is applied to the base and then written back
- [<Rn>], <offset>

<offset> options

An immediate constant
- #10

An index register
- <Rm>

A shifted index register
- <Rm>, LSL #<shift>

Lots of weird options...

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

EZ -bits
OxFFFFFFFF

32-bits
. E—

RO

<€

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC
xPSR

Endigness

31 30 29 28 27 26

subs rz:\;z\\\\\

mov ro, #4

ldr rl, [ro,#8]

rl=mem((ro)+8)

bne loop

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

W

Code 0.5GB

Endianess

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

>N

Z

E

\?

Q

RESERVED

38

Branch

Table A4-1 Branch instructions

Instruction Usage Range

B on page A6-40 Branch to target address +-1MB

CBNZ, CBZ on page A6-52 Compare and Branch on Nonzero, 0-126 B
Compare and Branch on Zero

BL on page A6-49 Call a subroutine +-16 MB

BLX (register) on page A6-50 Call a subroutine, optionally change Any
instruction set

BX on page A6-51 Branch to target address. change Any
instruction set

IBB, TBH on page A6-258 Table Branch (byte offsets) 0-510B
Table Branch (halfword offsets) 0-131070 B

Range [] offset range

BL [Branch with link (copy the address of the next instruction into Ir)

BLX [J Branch with link, and exchange instruction set (X for exchange to Thumb/ARM)
TBB [RO, R1] ; R1 1s the index, RO is the base address of the branch table [branch to the
R1™ element of the table starting at RO address

Branch examples

e b target
- Branch without link (i.e. no possibility of return) to target
- The PC is not saved!

e bl func
- Branch with link (call) to function func
- Store the return address in the link register (1r)

e bx 1lr (Branch and exchange)
- Use to return from a function
- Moves the 1r value into the pc
- Could be a different register than lr as well

e blx reg (Branch with Link and exchange)
- Branch to address specified by reg
- Save return address in 1r

- When using blx, makre sure lsb of reg is 1 (otherwise, the CPU
will fault b/c it’s an attempt to go into the ARM state)

Branch examples (2)

e blx label

- Branch with link and exchange state. With immediate
data, blx changes to ARM state. But since CM-3 does
not support ARM state, this instruction causes a fault!

® mov rl5, 0
- Branch to the address contained in r0

e 1dr rl1l5, [xrO]
- Branch to the to address in memory specified by r0

Calling b1l overwrites contents of 1r!
- So, save 1r if your function needs to call a function!

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

EZ -bits
OxFFFFFFFF

32-bits
. E—

RO

<€

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC
xPSR

Endigness

31 30 29 28 27 26

'/ZLb§ rz:\;z\\\\\

mov ro, #4

ldr rl, [ro,#8]

rl=mem((ro)+8)

bne loop

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

W

Code 0.5GB

Endianess

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

>N

Z

E

\?

Q

RESERVED

42

Data processing instructions

Table A4-2 Standard data-processing instructions

Mnemonic Instruction Notes

ADC Add with Canry -

ADD Add Thumb pemmits use of a modified immediate constant or a
zero-extended 12-bit immediate constant.

ADR Form PC-relative Address First operand is the PC. Second operand is an immediate constant.
Thumb supports a zero-extended 12-bit immediate constant.
Operation is an addition or a subtraction.

AND Bitwise AND -

BIC Bitwise Bit Clear -

CMN Compare Negative Sets flags. Like ADD but with no destination register.

P Compare Sets flags. Like SUB but with no destiation register.

EOR Bitwise Exclusive OR -

MOV Copies operand to destination ~ Has only one operand. with the same options as the second

operand in most of these instructions. If the operand is a shifted
register. the mnstruction 1s an LSL, LSR, ASR, or ROR instruction
mstead. See Shift instructions on page A4-10 for details.
Thumb permits use of a modified immediate constant or a
zero-extended 16-bit immediate constant.

«ADR PC, imm o The assembler generates an instruction that adds or subtracts a value to the PC.

+«CMP{cond} Rn, Operand2
+«CMN{cond} Rn, Operand2

(Rn-Operand2)
(Rn+Operand?2)

«The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS instruction, except that the

result is discarded.

«The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS instruction, except that the result

is discarded.

Many, Many More!

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

EZ -bits
OxFFFFFFFF

32-bits
. E—

RO

<€

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC
xPSR

Endigness

31 30 29 28 27 26

'/§Lb§ rz:i;I\\\\\

mov ro, #4

ldr rl, [ro,#8]

rl=mem((ro)+8)

bne loop

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

W

Code 0.5GB

Endianess

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

>N

Z

E

\?

Q

RESERVED

44

Load/Store instructions

Table A4-10 Load and store instructions

Hatefype Thedy e tﬁ::’ivileged 3:1(:)rr‘?vileged l(;)(()glcl’lsive g)t(z:ﬁsive
32-bit word LDR STR LORT STRT LDREX STREX
16-bit halfword - STRH - STRHT - STREXH
16-bit unsigned halfword LDRH - LORHT - LDREXH -

16-bit signed halfword LDRSH - LDRSHT - - -

3-bit byte - STRB - STRBT - STREXB
8-bit unsigned byte LDRB - LDRBT - LDREXB -

8-bit signed byte LDRSB - LDRSBT - - -

two 32-bit words LDRD STRD - - - -

Exclusive access is for when a memory is shared between some processors. When making access as
exclusive, it means only letting 1 processor to access that.

An application running unprivileged:

» means only OS can allocate system resources to the application, as either private or shared resources
* provides a degree of protection from other processes and tasks, and so helps protect the operating
system from malfunctioning applications.

Miscellaneous instructions

Table A4-12 Miscellaneous instructions

Instruction See

Clear Exclusive CLREX on page A6-56

Debug hint DBG on page A6-67

Data Memory Barrier DMB on page A6-68

Data Synchronization Barrier DSB on page A6-70

Instruction Synchronization Barmer ISB on page A6-76

If Then (makes following instructions conditional) IT on page A6-78

No Operation NOP on page A6-167

Preload Data PLD-PIDW (immediate) on page A6-176

PLD (register) on page A6-180

For example:

CLREX [clear the local record of the executing processor that an address has had a request for an
exclusive access.

DMB [] Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that
appear in program order before the DMB instruction are observed before any explicit memory accesses
that appear in program order after the DMB instruction. It does not affect the ordering of any other
instructions executing on the processor.

A5.3.2 Modified immediate constants in Thumb instructions
151413121110 9 8 7 6 5 4 3 2 1 0151413 1211109 8 7 6 5 4 3 2 1 0
i imm3 a:b:cde¥F gh

Table A5-11 shows the range of modified immediate constants available in Thumb data processing
instructions. and how they are encoded inthea. b.c. d. e. f g. h. 1. and imm3 fields in the instruction.

Table A5-11 Encoding of modified immediates in Thumb data-processing instructions

izimm3:a <const> a

0000x 00000000 00000000 00000000 abcdefgh
0001x 00000000 abcdefgh 00000000 abcdefgh®
0010x abcdefgh 00000000 abcdefgh 00000000 ©
0011x abcdefgh abcdefgh abcdefgh abcdefgh®
01000 1bcdefgh 00000000 20000000 DODOOOOD
01001 @1bcdefg hooORRRO 00000000 00000DEO
01010 201bcdef gh00RO20 00000000 0000ORO0
01011 2001bcde fgh0Rood 00000000 000DDAOD

8-bit values shifted to other positions

11101 20000000 00000200 200001bc defghdod
11110 00000000 00000200 0000001b cdefghod
11111 00000000 00000000 00000001 bcdefgh®

a. In this table, the immediate constant value is shown in binary form. to relate
abcdefgh to the encoding diagram. In assembly syntax, the immediate value is
specified in the usual way (a decimal number by default).

ARMV7-M ARMpdf b. UNPREDICTABLE if abcdefgh == 00000000.

Major elements of an Instruction Set Architecture

(word size, registers, memory, endianess, conditions, instructions, addressing modes)

32-bits iz-bits
OXFFFFFFFF
RO <€] p—
R1 I 0xE0100000
R2 Private peripheral bus - External
0xE0040000
R3 mov r‘e > #4 Private peripheral bus - Internal ST
R4
R5 External device 1.0GB
gs 1d r r‘l) [r‘e J #8] 0xA0000000
R8 r‘l_mem((P0)+8) External RAM 1.0GB
R9 -
R1 0 0x60000000
R11 Peripheral ~ 0.5GB
R12 bne 100p 0x40000000
R13 (SP) / \ S
R14 (LR) :
R15 (PC SUbS r‘z k) #1 \ G
N\ — 0.5GB
xPSR
0x00000000
Endigness Endianess
31 30 29 28 27 26 Y 0

N

Z

C1

\.’

Q

RESERVED

48

Application Program Status Register (APSR)

31 30 29 28 27 26 0

N

Z

C|V]|Q RESERVED

APSR bit fields are in the following two categories:

Reserved bits are allocated to system features or are available for future expansion. Further
information on currently allocated reserved bits 1s available in The special-purpose program status
registers (xPSR) on page B1-8. Application level software must ignore values read from reserved bits,
and preserve their value on a write. The bits are defined as UNK/SBZP.

Flags that can be set by many instructions:

N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
1s regarded as a two's complement signed integer, then N == 1 if the result is negative and
N =0 1f 1t is positive or zero.

Z, bit [30] Zero condition code flag. Set to 1 if the result of the instruction 1s zero, and to 0 otherwise.
A result of zero often indicates an equal result from a companson.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27] Set to 1 1f an SSAT or USAT instruction changes (saturates) the imnput value for the signed or
unsigned range of the result.

Updating the APSR

SUB Rx, Ry
- Rx =Rx - Ry
- APSR unchanged
e SUBS
- Rx =Rx - Ry
- APSR N, Z, C, V updated
ADD Rx, Ry
- Rx =Rx + Ry
- APSR unchanged
« ADDS
- Rx =Rx + Ry
- APSR N, Z, C, V updated

Overflow and carry in APSR

unsigned_sum = UInt(x) + Ulnt(y) + Ulnt(carry_in);
sighed_sum = SInt(x) + Sint(y) + Ulnt(carry_in);

result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0>
carry_out = if Ulnt(result) == unsigned_sum then ’0’ else ’1’;

overflow = if SInt(result) == signed_sum then ’0’ else ’1’;

Conditional execution:

Table A6-1 Condition codes

cond Zﬂx'::,?sci)g,i]c Meaning (integer) Meaning (floating-point) ab Condition flags
0000 EQ Equal Equal Z=1

0001 NE Not equal Not equal. or unordered Z=0

0010 cs°© Carry set Greater than equal. or unordered C=1

0011 ccd Carry clear Less than C=0

0100 MI Minus, negatrve Less than N=1

0101 PL Plus, positive or zero Greater than. equal. or unordered N=0

0110 vs Overflow Unordered V=

0111 VC No overflow Not unordered V=0

1000 HI Unsigned higher Greater than. or unordered C=1landZ=—0
1001 LS Unsigned lower or same Less than or equal C=—0orZ=—1
1010 CE Signed greater than or equal Greater than or equal N=V

1011 LT Signed less than Less than. or unordered N!I=V

1100 CcT Signed greater than Greater than Z=—0and N=V
1101 LE Signed less than or equal Less than. equal. or unordered Z=—1ortN!=V
1110 None (AL)® Always (unconditional) Always (unconditional) Any

- EQ, NE, ... are suffixes that add to other instructions (B+NE=BNE, ADDS+CS=ADDCS, ...) and check
their corresponding condition flags which make the original instruction conditional.

- Most ARM /Thumb instructions can be executed conditionally, based on the values of the APSR condition
flags.

- The type of instruction that last updated the flags in the APSR determines the meaning of condition codes.

IT blocks

e Conditional execution in C-M3 done in “IT” block
e IT[T|E]*3
e More on this later...

Conditional Execution on the ARM

e ARM instruction can include conditional suffixes, e.g.
- EQ, NE, GE, LT, GT, LE, ...

« Normally, such suffixes are used for branching (BNE)

« However, other instructions can be conditionally executed
- They must be inside of an IF-THEN block
- When placed inside an IF-THEN block
o Conditional execution (EQ, NE, GE,... suffix) and

 Status register update (S suffix) can be used together
- Conditional instructions use a special “IF-THEN” or “IT” block

e IT (IF-THEN) blocks
- Support conditional execution (e.g. ADDNE)
- Without a branch penalty (e.g. BNE)
- For no more than a few instructions (i.e. 1-4)

Conditional Execution using IT Instructions

e In an IT block

- Typically an instruction that updates the status register is exec’ed

- Then, the first line of an IT instruction follows (of the form ITxyz)
 Where each x, y, and z is replaced with “T”, “E”, or nothing (“”’)
e T’s must be first, then E’s (between 1 and 4 T’s and E’s in total)
e Ex:IT, ITT, ITE, ITTT, ITTE, ITEE, ITTTT, ITTTE, ITTEE, ITEEE

- Followed by 1-4 conditional instructions
« where # of conditional instruction equals total # of T’s & E’s

IT<x><y><z> <cond> 5 IT instruction (<x>, <y>,
;3 <z> can be “T”, “E” or)
instrl<cond> <operands> 5 1st instruction (<cond>

; must be same as IT)

instr2<cond or not cond> <operands> ; 2nd instruction (can be
; <cond> or <!cond>

instr3<cond or not cond> <operands> ; 3rd instruction (can be
; <cond> or <!cond>

instr4<cond or not cond> <operands> ; 4th instruction (can be
; <cond> or <!cond>

Source: Joseph Yiu, “The Definitive Guide to the ARM Cortex-M3”, 2" Ed., Newnes/Elsevier, © 2010.

Example of Conditional Execution using IT Instructions

CMP ri1, r2 3 if rl < r2 (less than, or LT)
ITTEE ; then execute 15t & 2" instruction
;3 (indicated by 2 T’s)
; else execute 3™ and 4" instruction
;3 (indicated by 2 E’s)

SUB r2, rl ; 1st instruction
LSR r2, #1 ;3 2nd instruction
SUB ri, r2 5 3rd instruction (GE opposite of LT)
LSR rl, #1 ; 4th instruction (GE opposite of LT)

Source: Joseph Yiu, “The Definitive Guide to the ARM Cortex-M3”, 2" Ed., Newnes/Elsevier, © 2010.

The ARM architecture “books” for this class

ARM'V7-M Architecture
Reference Manual

Cortex-M3

Revision r2p1

Technical Reference Manual

ARM

Prosedurs Cll tandad for the ARM Aroitectre.

Procedure Call Standard for the
ARM® Architecture

Document number ARM IH1 0042, current through ABI release 2.08
Date of fssve: 16" October, 2009
Abstract

Appication forthe
ARM architecture.

Keywords

Procedurs cal uncton cal, caling conventions, data layout

How to find the latest release of this specification or report a defect in it

[———
a5 Soware vt st o St iy e o e AP e ey

Licence

THE TERMS OF YOUR ROYALY ED LCENGE TO USE = GVEN IN SEC
1.4, Your RM V20). PLEASE READ THEM

caReFuLY.

Y DOWNLOADING OR OTHERWISE USING THIS SPECIICATION,
e Y00 DO NOT AGREE TOTHS. 5O NGT GOMNLOAG OR L5

£ 7O BE BOUND BY ALL OF ITS
SPECIFICATION

315 SECTION 1.4 FOR DETALS

Proprietary notice

ARM, Trumb, RealView, ARM7TOMI and ARMSTDMI are registered trademarks of ARM Limited. The ARM
i Fademork of AW Limied. ARM ARMGZEELS, ARMOAGE S, ARM1 19505 ARMI 151275 jerncN
‘Al other producis or

racemrks of e respecive owner.

ARM H1 00420 oyt © 20032000 ARM it Al s s Page 10f34

7Rate This Document

Actel SmartFusion™ Microcontroller
Subsystem User’s Guide

Pactel

{7Rate This Document

SmartFusion Evaluation Kit
User’s Guide

VActeI

R MATTE

7Rate This Document

Actel SmartFusion™ Programmable
Analog User’s Guide

ictel

Exercise:
What is the value of r2 at done?

start:
movs ro, #1
movs ril, #1
movs r2, #1
sub roe, ril

bne done
movs r2, #2
done:

b done

Solution:
What is the value of r2 at done?

start:
movs ro, #1 // r0 0O 1, Z=0
movs rl, #1 // rl1 O 1, Z=0
movs r2, #1 // r2 O 1, Z=0

sub ré, r1 // re O ro-rl
// but Z flag untouched
// since sub vs subs

bne done // NE true when Z==
// So, take the branch

movs r2, #2 // not executed

done:
b done // r2 is still 1

Today...

Software Development Tool Flow

The ARM software tools

“books” for this class

Sourcery G++ Lite
ARM EABI
Sourcery G++ Lite 2010q1-188
Getting Started

@ ConeSounceny

Using as

Using the GNU Compiler Collection

Dean Elsner, Jay Fenlason & friends

Richard M. Stallman and the Gce Developer Community

The GNU linker

Steve Chamberlain
Ian Lance Taylor

The ¢NU Binary Utilities

Roland H. Pesch
Joffrey M. Osier
Cygnus Support

s with GDB

Richard Stallman, Roland Pesch, Stan Shebs, et al

How does an assembly language program
get turned into an executable program image?

Binary program

file (.bin)
1c{\isembly f.gbject Executable
iles (.s) iles (.o0) image file @%

O

OO

o
— Moy)
link

- (1linker) %

(assembler) o,

Disassembled

Finker code (.1lst)
script (.1d)

What are the real GNU executable names for the ARM?

e Just add the prefix “arm-none-eabi-” prefix

e Assembler (as)
- arm-none-eabi-as

Binary program

e Linker (ld) file (.bin)
- arm-none-eabi-ld D
Executable

Assembly Object
files (.s) files (o) image f11e

e Object copy (objcopy) e
- arm-none-eabi-objcopy il :> ﬁ><hnker>[>[|
. Object dump (objdump) ()
- arm-none-eabi-objdump
« C Compiler (gcc) i,,ke,. o;osss(e;nlb;te;
- arm-none-eabi-gcc

script (.1d)
e C++ Compiler (g++)
- arm-none-eabi-g++

Tools Tutorial: The GNU Linker

http://web.eecs.umich.edu/~prabal/teaching/resources/eecs373/Linker.pdf

Real-world example

e To the terminal! Example code online:
https://github.com/brghena/eecs373_toolchain_examples)

o First, get the code. Open a shell and type:
S git clone https://github.com/brghena/eecs373_toolchain_examples

e Next, find the example and look at the Makefile and .s
S cd eecs373_toolchain_examples/example

S cat Makefile

S cat example.s

o Assemble the code* and look at the .lst, .0, .out files

S make

S cat example.lst

S hexdump example.o

S hexdump example.out

*You’ll need to have the tools installed. Two useful links:

https://launchpad.net/gcc-arm-embedded/+download
http://web.eecs.umich.edu/~prabal/teaching/resources/eecs373/Linker.pdf

How are assembly files assembled?

e S arm-none-eabi-as
- Useful options

e -MCpU
e -mthumb
e -0

$ arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o

A simple Makefile example

Target
arse Dependencies

axample.bin : example.o
arm-none-eabi-1ld example.s ~Ttext 0x0 -o example.out
arm-none-eabi-objdump -5-/example.out > example.lst
arm-none-eabi-objcopy ~“Obinary example.out example.bin

example.o : examplé.s
arm-none-eakl-as example.s -o example.o

clean
rm -f *.0 .
rm -f *.out Actions
rm -f *_.bin
rm -f *.1st

A “real” ARM assembly language program for GNU

.equUSTACK _TOP, ©x20000800
.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start
start:
movs ro, #10
movs rl, #0O
loop:
adds rl1, ro
subs ro, #1
bne 1loop
deadloop:
b deadloop
.end

What’s it all mean?

.equSTACK_TOP, ©x20000800 /* Equates symbol to value */

.text /* Tells AS to assemble region */
.syntax unified /* Means language is ARM UAL */
.thumb /* Means ARM ISA is Thumb */
.global _start /* .global exposes symbol */

/* _start label is the beginning
...of the program region */
.type start, %function /* Specifies start is a function */
/* start label is reset handler */
_start:
.word STACK_TOP, start /* Inserts word 0x20000800 */
/* Inserts word (start) */
start:
movs ro, #10 /* We’ve seen the rest ... */
movs rl, #O
loop:
adds rl1, ro
subs ro, #1
bne 1loop
deadloop:
b deadloop
.end

What information does the disassembled file provide?

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o
arm-none-eabi-1ld -Ttext Ox0 -o examplel.out examplel.o
arm-none-eabi-objcopy -Obinary examplel.out examplel.bin
arm-none-eabi-objdump -S examplel.out > examplel.lst
.equ STACK_TOP, 0x20000800 examplel.out: file format elf32-littlearm
.text
.syntax unified
.thumb Disassembly of section .text:
.global _start
.type start, %function 00000000 <_start>:
0: 20000800 .word 0x200008600
_start: 4: 00000009 .word 0x00000009
.word STACK_TOP, start
start: 00000008 <start>:
movs roe, #10 8: 200a movs ro, #10
movs rl, #O a: 2100 movs rl, #0
loop:
adds r1, reo 0000000c <loop>:
subs ro, #1 c: 1809 adds ri1, rl, ro
bne loop e: 3801 subs ro, #1
deadloop: 10: difc bne.n c <loop>
b deadloop
.end 00000012 <deadloop>:
12: e7fe b.n 12 <deadloop>

Linker script that puts all the code in the right places

OUTPUT FORMAT ("elf32-littlearm")
OUTPUT_ ARCH (arm)
ENTRY (main)

SECTIONS

{
.text

{
. = ALIGN (4) ;
* (.text¥*)
. = ALIGN (4) ;
_etext = .
}
}

end = .;

More info: The GNU Linker

http://web.eecs.umich.edu/~prabal/teaching/resources/eecs373/Linker.pdf

Specifies little-endian arm in ELF format
Specifies ARM CPU
Start executing at label named “main”

¢«

.”’ is a reference to the current memory
location

First align to a word (4 byte) boundary
Place all sections that include .text at
the start (* here is a wildcard)

Define a label named _etext to be the
current address.

How does a mixed C/Assembly program
get turned into a executable program image?

C files (.c)

Binary program

file (.bin)
1d

(linker)

Assembly f.gbjeCt <<;ij Executable
files (.s) iles (.0) image file @0@
&

P
gcc P
> (compite ()
as + link) %
(assembler) Jb&
A 4T v
Disassembled
. . ; Code (.1lst)
Library object Linker

files (.0) script (.1d)

Real-world example: Mixing C and assembly code

e To the terminal again! Example code online:

https://github.com/brghena/eecs373_toolchain_examples
S git clone https://github.com/brghena/eecs373_toolchain_examples

e Inline assembly
S cd eecs373_toolchain_examples/inline_asm
S cat cfile.c

e Separate C and assembly

S cd eecs373_toolchain_examples/inline_asm
S cat asmfile.s

S cat cfile.c

*You’ll need to have the tools installed. Two useful links:

https://launchpad.net/gcc-arm-embedded/+download
http://web.eecs.umich.edu/~prabal/teaching/resources/eecs373/Linker.pdf

Today...

Application Binary Interface (ABI)

When is this relevant?

o The ABI establishes caller/callee responsibilities
- Who saves which registers
- How function parameters are passed
- How return values are passed back

e The ABI is a contract with the compiler
- All assembled C code will follow this standard

e You need to follow it if you want C and Assembly
to work together correctly

From the Procedure Call Standard

Source: Procedure Call Standard for the ARM Architecture
http://web.eecs.umich.edu/~prabal/teaching/resources/eecs373/ARM-AAPCS-EABI-v2.08. pdf

Register | Synonym | Special Role in the procedure call standard
r1s PC The Program Counter.
ri4 LR The Link Register.
r3 SP The Stack Pointer.
r12 IP The Intra-Procedure-call scratch register.
ri1 v8 Variable-reqgister 8.
r10 v7 Variable-register 7.
vb)
9 3B Platform register. : :
R The meaning of this register is defined by the platform standard.
r8 v5 Variable-register 5.
r7 v4 Variable register 4. e
6 v3 Variable register 3. ARM "ok
5 w2 Variable register 2. e
a i Variable register 1. R R
r3 a4 Argument / scratch register 4. .
2 a3 Argument / scratch register 3. e S o el
r1 a2 Argument / result / scratch register 2. 5
r0 at Argument / result / scratch register 1. :,‘f,::.i:f,;

AR, Thien, ReelView; ARMTTOM!on ARVSTDM arerecsiered wdemerks of ARM Linitad. The ARM logo
ARMS, ARMOZ6E.)-S, ARMI46E-S, ARMHGEJ S ARM1156T2F-S ARM1176JZ-S

iarks of ARM Limited. All other products or services mentioned herein may be
« d omarks of thi eir respective owners.

ARM IHI 0042D (Copyright ©2003-2008 ARM Liitod. Al rights reserved. Page 10f 34

ABI Basic Rules

1. Asubroutine must preserve the contents of the
registers r4-11 and SP
- These are the callee save registers
- Let’s be careful with r9 though

2. Arguments are passed though rO to r3
- These are the caller save registers

- If we need more arguments, we put a pointer into
memory in one of the registers

 We’ll worry about that later
3. Return value is placed in r0
- r0 and r1 if 64-bits

4. Allocate space on stack as needed. Use it as
needed. Put it back when done...
- Keep things word aligned*

Let’s write a simple ABI routine

e int bob(int a, int b)

- returns aZ + b?

Instructions you might need
- add adds two values

- mul multiplies two values

- bx branch to register

Other useful facts
e Stack grows down.

- And pointed to by “sp”
Return address is held in “lr”

Register | Synonym
ris
r4
r3
r2
ri1 v8
r10 v7
g
r8 v5
r7 v4
ré v3
s v2
r4 vi
r3 a4
r2 a3

r1

a2

o

at

Questions?

Comments?

Discussion?

