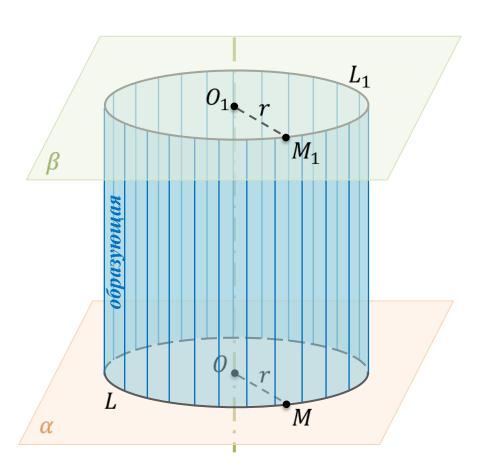


Цилиндр

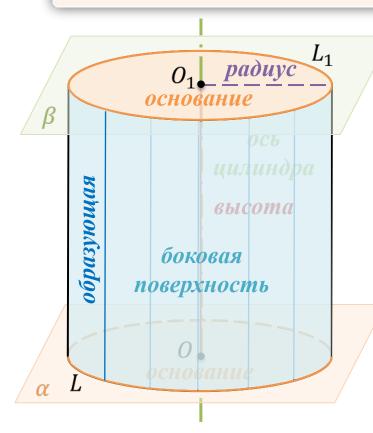
Цилиндр


Цилиндр

Поверхность, образованная этими прямыми, называется цилиндрической поверхностью.

Сами прямые – *образующими* цилиндрической поверхности.

Прямая, проходящая через точку 0 перпендикулярно к плоскости α , называется 0 сью цилиндрической поверхности.


Поскольку все образующие и ось перпендикулярны к плоскости α, то они параллельны друг другу.

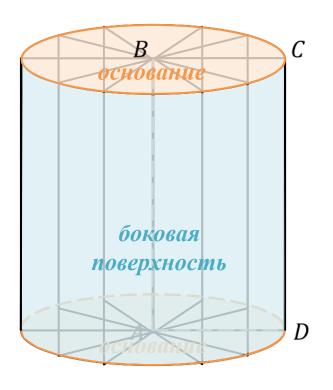
Множество концов образующих, лежащих в плоскости β , получается из окружности L параллельным переносом на вектор $\overrightarrow{OO_1}$.

Следовательно, при параллельном переносе на вектор $\overrightarrow{OO_1}$ окружность L перейдет в равную ей окружность L_1 радиуса r с центром в точке O_1 .

Определение. Тело, ограниченное цилиндрической поверхностью и двумя равными кругами с границами L и L_1 , называется *цилиндром*.

Прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями α и β , которые перпендикулярны образующим цилиндрической поверхности.

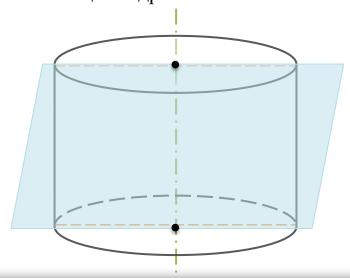
Радиус основания называется радиусом цилиндра.


Цилиндр называется **равносторонним**, если его высота равна диаметру основания.

Боковой поверхностью цилиндра называется часть цилиндрической поверхности, расположенная между основаниями цилиндра.

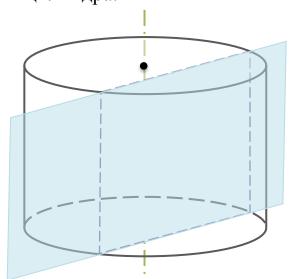
pa.

Цилиндр можно получить вращением прямоугольника вокруг одной из его сторон на 360°.

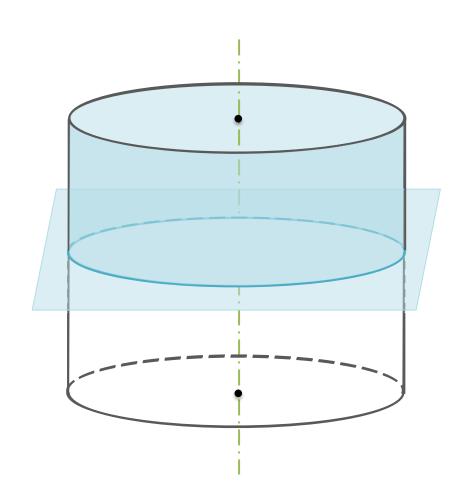


Основания цилиндра образуются вращением сторон BC и AD.

Боковая поверхность цилиндра образуется вращении стороны *CD*.

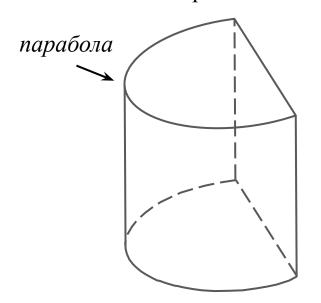


Если секущая плоскость проходит *через ось цилиндра*, то **сечение представляет** собой **прямоугольник**, две стороны которого – образующие, а две другие – диаметры оснований цилиндра.

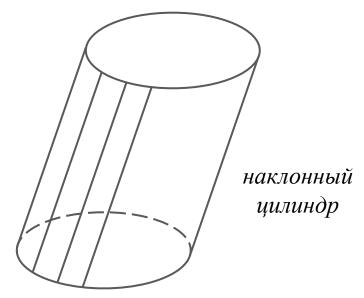


Определение. *Осевым сечением* цилиндра называется сечение цилиндра плоскостью, проходящей через его ось.

Если секущая плоскость *параллельна оси цилиндра*, то **сечением** цилиндра **служит прямоугольник**, две стороны которого – образующие цилиндра, а две другие – хорды оснований цилиндра.


Если секущая плоскость *перпендикулярна к оси цилиндра*, то **сечение является кругом**.

Такая секущая плоскость отсекает от данного цилиндра тело, которое также является цилиндром.


Его основаниями служат два круга, один из которых и есть рассматриваемое сечение.

Замечание. На практике очень часто встречаются предметы, которые имеют форму сложных цилиндров.

Цилиндр, каждое основание которого представляет собой фигуру, ограниченную частью параболы и отрезком.

Цилиндр, основаниями которого являются круги, но образующие цилиндра не перпендикулярны к плоскостям оснований.

Задача. Точка F — середина образующей AB цилиндра, центрами оснований которого являются точки O и T. Верно ли, что FO = FT?

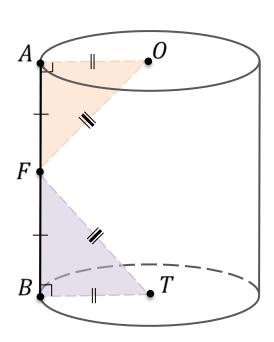
Решение.

Рассмотрим ΔFAO и ΔFBT .

OA и *TB* – радиусы цилиндра.

 $AB \perp OA$ и $AB \perp TB$.

 ΔFAO и ΔFBT — прямоугольные.


OA = TB

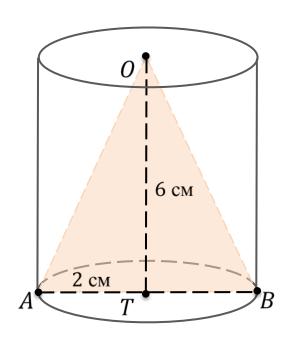
FA = FB

Значит, $\Delta FAO = \Delta FBT$ по двум катетам.

Следовательно, FO = FT.

Ответ: FO = FT.

Задача. Точка O — центр основания цилиндра. Отрезок AB — диаметр другого его основания. Вычислите площадь ΔAOB , если радиус цилиндра равен 2 см, а его высота — 6 см.


Решение.

$$S_{\Delta} = \frac{1}{2} \cdot a_{\text{осн}} \cdot h$$
 $h_{\text{цилиндра}} = h_{\Delta AOB} = 6 \text{ (см)}$

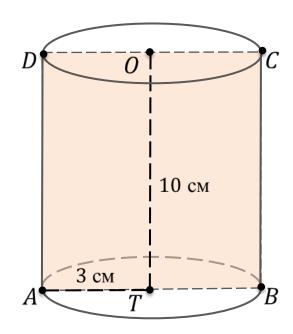
$$AB = d = 2r = 4 \text{ (cm)}$$

$$S_{\Delta AOB} = \frac{1}{2} \cdot 6 \cdot 4 = 12 \text{ (cm}^2\text{)}$$

Ответ: 12 см².

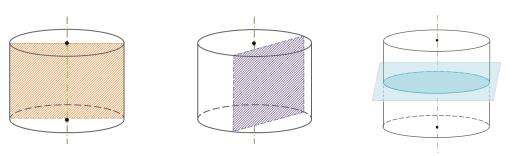
Задача. Радиус цилиндра 3 см, а его высота -10 см. Вычислите площадь осевого сечения.

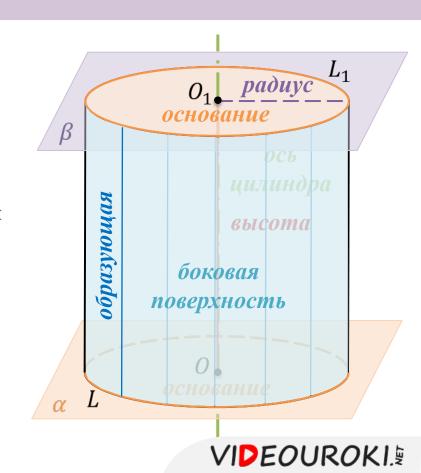
Решение.


$$h = l$$

$$b = l = 10 \text{ (cm)}$$

$$a = d = 2r = 2 \cdot 3 = 6$$
 (cm)


$$S_{ABCD} = a \cdot b = 6 \cdot 10 = 60 \text{ (cm}^2\text{)}$$


Ответ: 60 см².

Понятие цилиндра

Прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями α и β , которые перпендикулярны образующим цилиндрической поверхности.

