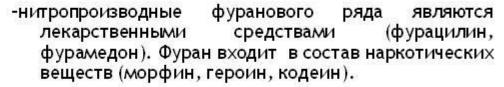

АЗОТСОДЕРЖАЩИЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ

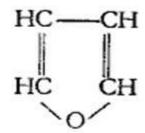
ПИРРОЛ

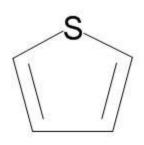
ЦИКЛИЧЕСКИЕ ОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Циклические

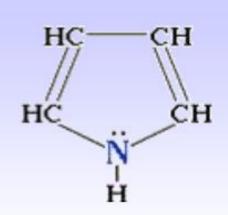

ПЯТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ С ОДНИМ ГЕТЕРОАТОМОМ

Пиррол


- порфировый комплекс и железо являются основой гемоглобина
- комплекс порфирина с магнием является основой хлорофилла
- пиррольные ядра, связанные с кобальтом, входят в состав витамина В12

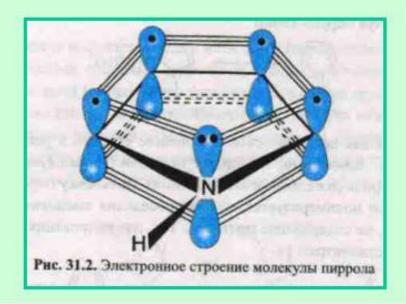


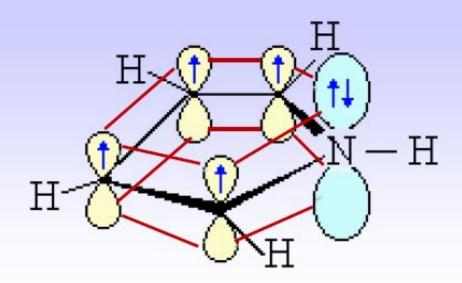
- Близок к бензену по свойствам. Входит в состав ихтиоловой мази
- Производным теофена является биотин (витамин Н), отсутствие которого в пище нарушает обмен белков и жиров в организме и ведет к кожным заболеваниям



- Пиррол был обнаружен
 в костяном масле
 (продукт сухой
 перегонки костей) и в
 небольшом количестве
 в каменноугольной
 смоле (Рунге, 1834 г.).
 - Строение его установлено А.
 Байером в 1870 г.

- Пиррол- важнейший представитель пятичленных гетероциклов с одним гетероатомом. Он является родоначальником важных природных соединений, к которым принадлежат гем
 - (компонент гемоглобина крови) и хлорофилл.

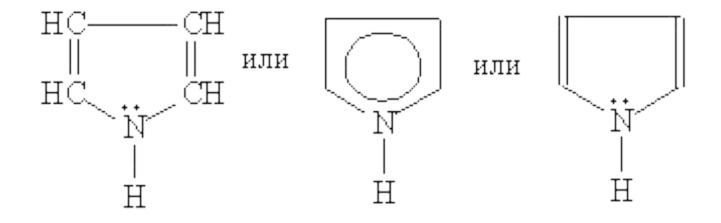



Пиррол С₄H₄NH – пятиатомный гетероцикл с одним атомом азота

Бесцветная жидкость температура кипения 130 °C плохо растворяется в воде на воздухе быстро окисляется и темнеет

Строение молекулы пиррола

- Атомы углерода и атом азота находятся в состоянии в sp²гибридизации. Четыре негибридизованных электрона атома
 углерода и неподеленная электронная пара атома азота образуют
 п-электронную ароматическую систему.
- Будет ли пиррол проявлять основные свойства?
- Электронная пара атома азота в пирроле входит в состав ароматической системы, поэтому пиррол практически лишен основных свойств.



Электронное строение

Атомы углерода и азота находятся в состоянии sp²-гибридизации. Цикл имеет плоское строение.

На негибридной р-орбитали азота находится неподеленная пара электронов, которые вступают в сопряжение с четырьмя π -электронами атомов углерода.

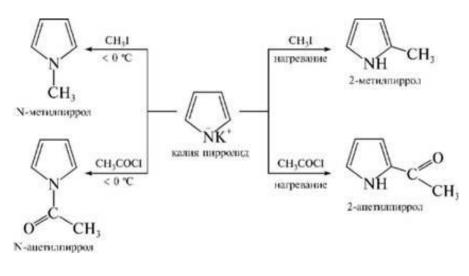
Таким образом, в циклической системе сопряжения находится 6 электронов, что определяет ароматические свойства пиррола

Получение пиррола

• Конденсацией ацетилена с аммиаком

$$2HC≡CH + NH_3 \xrightarrow{t, Fe_2O_3} C_4H_4NH + H_2$$

реакция Юрьева)


КИСЛОТНЫЕ СВОЙСТВА

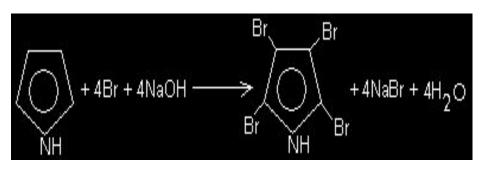
- За счет полярности связей N-Н пиррол проявляет слабовыраженные кислотные свойства:
- a) со щелочными Me (K, Na)

Соли других металлов получают в жидком аммиаке.

б)КОН (130 °C)
 нс-сн нс сн нс сн нс сн нс сн нс сн нс сн

 Соли пиррола используют для внедрения алкила или ацила в молекулу пиррола

АРОМАТИЧЕСКИЕ СВОЙСТВА


- Ароматические свойства пиррола проявляются в реакциях электрофильного замещения. Заместители занимают **©**и-ПОЛОЖЕНИЕ
- В кислой среде пиррол неустойчив: сильные минеральные кислоты могут «вытащить» электронную пару из пиррольного кольца, ароматичность нарушается и пиррол превращается в неустойчивое диеновое соединения, происходит «осмоление». Такая боязнь кислот называется «<u>ацидофобностью</u>»

 Поэтому для нитрования берут не азотную кислоту, а ацетилнитрат (ангидрид уксусной и азотной кислот) Сульфирование: комплекс пиридина с оксидом серы (VI)

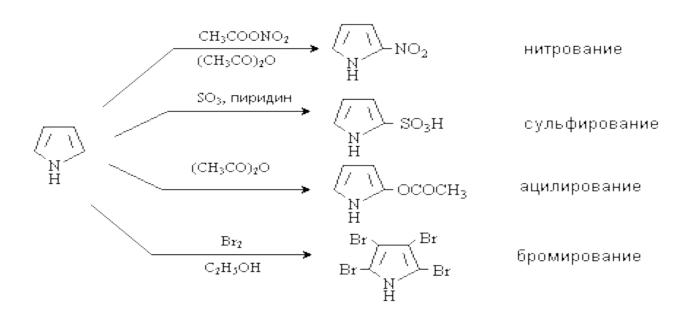
а для сульфирования — комплекс пиридина с оксидом серы (VI):

$$CH_3-C$$
 0 + HONO₂ — CH_3-C 0 + CH₃COOH 0 - NO₂ - NO₂ + CH₃COOH 0 - NO₂ - HITPOOTHOPOOT (X = NH); 2-HITPOOTHOPOOT (X = NH); 2-HITPOOTHOPOOT (X = S)

Необходимо присутствие щелочи из-за «ацидофобности» пиррола:

Галогенирование пиррола протекает *настолько легко*, гораздо легче, чем у бензола, что, если специальным образом не контролировать течение реакции, образуются исключительно стабильные тетрагалогенопроизводные. Попытки провести моногалогенирование простых алкилпирролов оказались безуспешными, поскольку при этом образуются чрезвычайно реакционноспособные пиррилалкилгалогениды продукты галогенирования боковой цепи.

ГИДРИРОВАНИЕ ПИРРОЛА

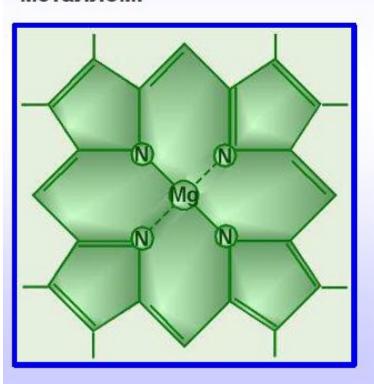

 При гидрирование пиррола образуется пирролидиннасыщенный циклический вторичный амин:

 Так как электронная пара «вышла» из пиррольного кольца, то пирролидин является сильным основанием: растворим в воде и взаимодействует с кислотами.

нинд маленновой кислоты

Пиррол чрезвычайно чувствителен к действию окислителей, он легко окисляются даже кислородом воздуха. В зависимости от условий окисление может проходить с разрывом гетероциклического ядра и образованием пиррольной полимерных смолы. При окислении пиррола хромовой кислотой образуется имид малеиновой кислоты.

ОБОБЩЕНИЕ ХИМИЧЕСКИХ СВОЙСТВ ПИРРОЛА


Интересные факты

- Изучение комплексных соединений одна из интереснейших областей химии, в том числе биологической химии.
- Так, красное вещество гем, составная часть гемоглобина крови теплокровных животных и человека это комплексное соединение: комплексообразователь ион Fe2+, лиганды четыре кольца пиррола, имеющие боковые цепи. Похожее строение у хлорофилла, но в нем комплексообразователем служит ион Mg2+.

Пиррольные структуры содержатся в

- гемоглобине,
- хлорофилле,
- витамине В12 и некоторых других природных соединениях

В состав молекул этих сложных веществ входит тетрапиррольный фрагмент (порфин) в виде комплекса с металлом.

