ABG CASE STUDIES & INTERPRETATION

It's not magic understanding ABG's, it just takes a little practice!

Acid-base imbalances

- Metabolic acidosis
- Metabolic alkalosis
- Respiratory acidosis
- Respiratory alkalosis

Metabolic

• METABOLIC ACIDOSIS: Decrease the HCO3 - --> the pH goes down.

• Compensation: Respiratory Alkalosis (hyperventilation) will bring the pH back near normal.

- Causes: Diarrhea, DKA, LA, renal failure.
- METABOLIC ALKALOSIS: Increase the HCO3 --> the pH goes up.

• Compensation: Respiratory Acidosis (hypoventilation) can help to bring the pH+

Respiratory

- RESPIRATORY ACIDOSIS: Increase the PCO2---> the pH goes down. *Hypoventilation.* Compensation: Metabolic Alkalosis can help bring the pH back near normal.
- Causes: pneumonia, Bronchitis, Asthma
 RESPIRATORY ALKALOSIS: Decrease the PCO₂-> the pH goes up. *Hyperventilation.*
- Compensation: Metabolic Acidosis can
 help bring the pH back near normal.

METABOLIC ALKALOSIS

CAUSES:

- Vomiting: Lose enough stomach acid to produce alkalosis.
- Diuretics: Loop diuretics and thiazides can lead to hypokalemia ----> secondary metabolic alkalosis.
- Antacids overuse

RESPIRATORY ACIDOSIS:

causes:

CNS DEPRESSION

- DRUGS:Opiates, sedatives, anaesthetics
- OBESITY HYPOVENTILATION SYNDROME
- STROKE

NEUROMUSCULAR DISORDERS:

- NEUROLOGIC: POLIO,GBS,TETANUS,BOTULISM
- MUSCULAR DYSTROPHY

AIRWAY OBSTRUCTION

ACUTE ASPIRATION, LARYNGOSPASM

CHEST WALL RESTRICTION

- PLEURAL: Effusions, empyema, pneumothorax, fibrothorax
- CHEST WALL: Kyphoscoliosis, scleroderma, ankylosing spondylitis, obesity

SEVERE PULMONARY RESTRICTIVE DISORDERS

RESPIRATORY ALKALOSIS

- Causes:
- High altitude.
- Neuromuscular disease
- Respiratory center depression
- Inadequate mechanical ventilation
- Sepsis
- Burns

Metabolic acidosis

- Metabolic acidosis: Is caused by a decrease in HCO₃- concentration in blood.
- Causes:
- **1.** Increased production of acids: LA, kA, Salicylate poisoning.
- 2. Loss of HCO₃-: Diarrhea and kidneys RTA.
- **3.** Blood profile: pH decreased
- [HCO₃-] decreased, PCO₂ decreased

Compensation of Metabolic acidosis:

- Respiratory compensation: decrease in pH stimulates respiratory center causing hyperventilation which produces decrease in PCO2.
- Renal Compensation: excess H+ is excreted as titratable acid and NH4+.
- Treatment: lactate containing solution which converts HCO3- ion the liver.

ABG Disorders

Disorder	Change	Compensation
Respiratory Acidosis	↑PaCO ₂	↑HCO ₃ (Metabolicalkalosis)
Respiratory Alkalosis	Pa CO ₂	HCO ₃
Matabalia		
Acidosis		(Respiratory alkalosis)
M etabolic Alkalosis	HCO ₃	PaCO ₂ (Respiratory acidosis)

Assessment of acid base status

- Direct arterial blood measurements: <u>ABG</u>
 pH
 - pCO₂ pO₂

NB: use heparinised blood, measured within 10 minutes

Derived measures:

Bicarbonate (HCO₃⁻)

Normal Values: pH =7.35-7.45 (7.4) HC 0 3⁻=22 - 26 m Eq / L (24 m Eq / L) pC 02 = 35 - 45 mm Hg (40 mm Hg)

Metabolic alkalosis

From Thibodeau GA, Patton KT: Anatomy & physiology, ed 5, St Louis, 2003, Mosby. Mosby items and derived items copyright @ 2004, 2000 by Mosby, Inc.

Metabolic acidosis

From Thibodeau GA, Patton KT: *Anatomy & physiology*, ed 5, St Louis, 2003, Mosby. Mosby items and derived items copyright © 2004, 2000 by Mosby, Inc.

Respiratory acidosis

From Thibodeau GA, Patton KT: Anatomy & physiology, ed 5, St Louis, 2003, Mosby. Mosby items and derived items copyright @ 2004, 2000 by Mosby, Inc.

Respiratory Alkalosis

From Thibodeau GA, Patton KT: Anatomy & physiology, ed 5, St Louis, 2003, Mosby. Mosby items and derived items copyright © 2004, 2000 by Mosby, Inc.

Metabolic Acidosis

pH 7.30
PaCO2 40
HCO3 15

Metabolic Alkalosis

pH 7.50
PCO2 40
HCO3 30

Respiratory Acidosis

• _PH 7.30

- PaCO2 60
- HCO3 26

Respiratory Alkalosis

pH 7.50
PaCO2 25
HCO3 23

• What are the compensations?

- Respiratory acidosis --metabolic alkalosis
- Respiratory alkalosis --metabolic acidosis
- In respiratory conditions, therefore, the kidneys will attempt to compensate and visa versa.

- Buffers kick in within minutes.
- Respiratory compensation is rapid and starts within minutes and complete within 24 hours. Kidney compensation takes hours and up to 5 days

Acid base disorder-worksheet

Practice ABG's

pH 7.48 pH 7.32 pH 7.30 pH 7.38 pH 7.49 pH 7.35 pH 7.45 pH 7.31 pH 7.30 pH 7.48

 $PaCO_2 32$ PaCO₂ 48 $PaCO_2 40$ PaCO₂ 48 PaCO₂ 40 $PaCO_2 48$ PaCO₂ 47 PaCO₂ 38 $PaCO_2 50$ $PaCO_2 40$

 HCO_3 24 HCO₃ 25 HCO₃ 18 HCO₃ 28 HCO₃ 30 HCO₃ 27 HCO₃ 29 HCO₃ 15 HCO₃ 24 HCO₃ 30

Answers:

- I. Respiratory alkalosis
- 2. Respiratory acidosis
- 3. Metabolic acidosis 4. Compensated
 Respiratory
 acidosis
 5. Metabolic alkalosis
- 6. Compensated Respiratory acidosis
 7. Compensated Metabolic alkalosis
 8. Metabolic acidosis
 9. Respiratory acidosis

STEPS OF ASSESSING ABG

 <u>STEP 1</u>: Diagnose whether it is acidosis or alkalosis- (pH will help)

 <u>STEP2</u>: Diagnose whether compensated or non compensated

 <u>STEP 3</u>: Diagnose whether it is metabolic or respiratory(Look at the value of bicarbonate and pCO2)

Work sheet

- Diarrhea may lead to-----?
- Acid loss due to vomiting and gastric suction may lead to ______ alkalosis?
- Overuse of _____may lead to metabolic alkalosis?

Problem#1

- 67 year female known diabetic for past 20years presented with sudden onset of severe chest pain and Shortness of breath.
- ABG analysis showed:
- pH 7.36
- PCO233 mmHg
- HCO3 18 mmol/L
- Discuss the probable diagnosis.

Problem #2

- A 30-year old man with DM presents with polyuria, polydipsia, fever, cough, and purulent sputum.
- His ABG shows the following Na+140 / CI-104
 - K+7.0
- pH:6.95
- pCO2 : 33
- Hco3 : 7.0
- Discuss the probable diagnosis.

Problem#3

 45 year old male was admitted to the emergency room with complaints of mild vomiting, associated with disorientation and muscular weakness. His blood investigations showed the following

- pH =7.20 Na -137meq/l
- HCO3-=16mEq / L CI-108meq/I
- pCO2 = 34mm Hg K -5.8 Glucose=685mg/dl urea49mg/dl

Problem #4

 60 year male presents to the ED from a nursing home. You have no history other than he has been breathing rapidly and is less responsive than usual.

- Na+ 123 Cl- 99 HCO3-5
- pH7.31pCO₂ 10
- Discuss the probable diagnosis.

Problem # 5

- 60year old man was admitted with severe abdominal pain, which started some 2 hours back.
- Clinically he was in a state of shock with distended abdomen. Femoral pulses could not be palpable
- His ABG shows the follows pH : 7.05
- pCO2: 26.3 mmHg
- HCO3: 7 mmol/L Discuss the probable diagnosis.

THANK YOU FOR LISTENING!