An Introduction to
Software
Architecture Case

Based on OdkbCH@S & Mary
Shaw — 94



Key Word In Context (KWIC)

- Search index Harry Potter

About 49,700,000 results (0.25 seconds)

- Searchlng for ke) words Harry Potter - The Official Site
The Official Harry Potter Website offers content, games and activities which seamlessly

with context sensitive extend the magical world of Harry Potter beyond the big screen.

harrypotter.wamnerbros.com/ - Cached - Similar

dl splay Harry Potter and the Half-Blood Prince -
Harry Potter and the Half-Blood Prince. Voldemort is tightening his grip on both the Muggle

and wizarding worlds and Hogwarts is no longer the safe haven it ...

- pI’OVIdCS the user harrypotter.wamnerbros.com/harrypotterandthehalf.../index.html - Cached - Similar
. Harry Potter - Wikipedia, the free encyclopedia
Wlth morce Harry Potter is a series of seven fantasy novels written by the British author J. K. Rowling.

The books chronicle the adventures of the adolescent wizard ...
: : en.wikipedia.org/wiki/Harry Potter - Cached - Similar
information -
Harry Potter (film series) - Wikipedia, the free encyclopedia =
The Harry Potter film series is based on the seven Harry Potter novels by British author J.
K. Rowling and, when complete, will consist of eight ...
en.wikipedia.org/wiki/Harry_Potter_(film_series) - Cached - Similar

[#] Show more results from en.wikipedia.org




Example

Input: Titles Output: Index
. Clouds are white

. Ottawa 1s beautiful

. are white Clouds

. beautiful Ottawa i1s

. Clouds are white

. Is beautiful Ottawa

. Ottawa 1s beautiful

. white Clouds are



Main Program/Subroutine with Shared Data
. Functional decomposition

. Components are subroutines

—»» Subprogram Call
p Direct Memory Access
System 1/O




Solution 1

Strengths

+ Centralized data
— efficient representation of data

* Modular decomposition

Weaknesses

- Resistant to change

- consider the impact of data storage
format

- difficult to enhance the overall functionality

- reuse of component 1s difficult



Solution 2

Abstract Data
LyBS&siilar to one with data encapsulation

- data access via component interface invocation

— no direct data access

« Components similar to solution 1



Abstract Data
Types

¥

alph <¢—

word <<

—
. ¥ i i -
"q'_)' (@) Q':;.C E -E

g2 § ¢

wn O o =

S

— System I/O —»» Subprogram Call




Solution 2

Advantages

- Handles change well
— algorithm and data are encapsulated in individual modules
- Reuse

- modules interact via defined interfaces
Disadvantages
 Evolution still a problem

~ to add new features may require changes to existing or addition
of new components



Solution 3

Implicit Invocation

- Similar to solution 1
— shared data
- Two main differences

— data 1s more abstract
. underlying storage 1s not exposed to components
- components are invoked implicitly

. €.g. when a line 1s added



_~ Implicit invocation
System 1/O

Calls to circular shift and alphabetizer are
implicit, and are the result of inserting lines

10



Solution 3

Advantages

+ Strong evolution path

~ functional enhancements are easy
- new components can be attached and removed

- components are shielded from data storage representation
. REALLY WHY?

« Minimal component coupling/dependency

~ data events are the source of all interactions

11



Solution 3

Disadvantages
. Difficult to control the ordering of processing

. Requires more storage capacity

~ IS THIS REALLY A DISADVANTAGE?

12



Pipes & Filters

+ Four filters
- 1nput, shift, alphabetize, output
— each filter can compute when data is available at the input

- data sharing is restricted by pipes

6-4“-3

—»p pipe System 1/O

13



Advantages
. Intuitive flow of processing

. Reuse

- Evolution

new filters can be easily added

14



Solution 4

Disadvantage

- Virtually impossible to support an interactive system
- Is this a true pipes & filters?

~ consider the data flow

* What i1s the LCD data unit?

15



change in algorithm

change in data
representation

change in functionality

performance

reuse




Reading

Will be on exam
. Case Study 2: Instrumentation Software

. Case Study 3: A Fresh View of Compilers
Will not be on exam

* Case Study 4: A Layered Design with Different Styles
for the Layers

" Case Study 5: An Interpreter Using Different Idioms for
the Components

17



