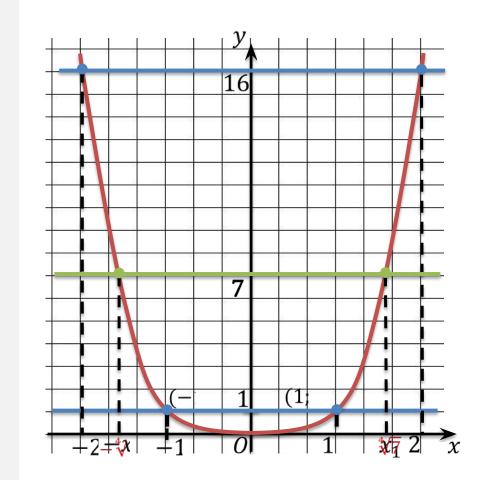
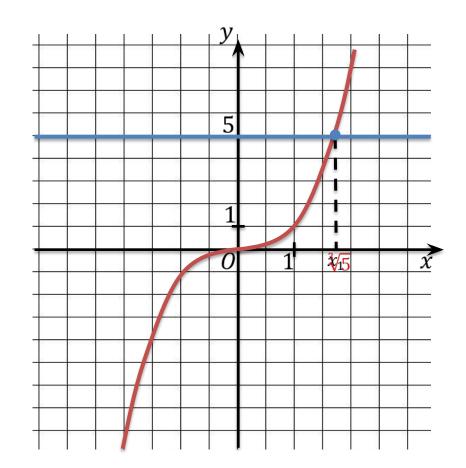
Понятие корня n-й степени из действительного числа

$$x^4 = 1$$
 $x^4 - 1 = 0$
 $(x^2 - 1)(x^2 + 1) = 0$
 $x^2 - 1$
или
 $(x - 1)(x + 1) = 0$
нет решений
или
 $x = 1$
 $x = -1$
 $x^4 = 16 \Leftrightarrow x = \pm 2$
 $x^4 = 7$
 x_1, x_2 — иррациональные числа
 $\sqrt[4]{}$
 $x_1 = x_2 = -$



$$x^{3} = 5$$
 $x_{1} = \sqrt[3]{5}$
 $x^{n} = a, a > 0, n \in N, n > 1$
если n — четное, $x_{1} = \sqrt[n]{a}, x_{2} = -\sqrt[n]{a}$
если n — нечетное, $x = \sqrt[n]{a}$
 $x^{n} = 0 \Rightarrow x = 0$



Корнем n-ой степени из неотрицательного числа a

(n=2,3,4,5,...) называют такое неотрицательное число, при возведении которого в степень n получается a.

$$\sqrt[n]{a} \ge 0, \sqrt[n]{a}$$

a – подкоренное число, n – показатель корня

$$n=2 \Leftrightarrow \sqrt{a}$$
 – квадратный $n=3 \Leftrightarrow \sqrt[3]{a}$ – кубический корень

Возведение в степень	Извлечение
$6^2 = 36$	$\sqrt{36} = 6$
$5^5 = 3125$	$\sqrt[5]{3125} = 5$
$4^7 = 16384$	$\sqrt[7]{16384} = 4$
$3^8 = 6561$	$\sqrt[8]{6561} = 3$

$$(-7)^2 = 49$$
 $\sqrt{49} = -7$

 $\sqrt[n]{a}$ – радикал (от латинского слова *radix* – «корень»).

Вычислить: а) $\sqrt[2]{121}$; б) $\sqrt[3]{125}$; в) $\sqrt[9]{0}$; г) $\sqrt[7]{14}$

Решение:

a)
$$\sqrt{121} = 11 \Leftrightarrow \begin{cases} 11 > 0 \\ 11^2 = 121 \end{cases}$$

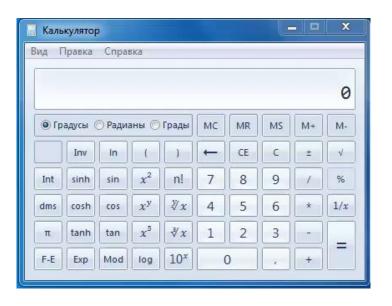
6)
$$\sqrt[3]{125} = 5 \Leftrightarrow \begin{cases} 5 > 0 \\ 5^3 = 125 \end{cases}$$

$$B)\sqrt[9]{0} = 0$$

$$\Gamma$$
) $\sqrt[7]{14}$

$$1^7 = 1$$

$$2^7 = 128$$



$$(-7)^3 = -343 \Leftrightarrow \sqrt[3]{-343} = -7$$

Корнем нечетной степени n из отрицательного числа a (n=3,5,7,...) называют такое отрицательное число, при возведении которого в степень n получается a.

$$\sqrt[n]{a} < 0, \sqrt[n]{a}$$

a — подкоренное число, n — показатель корня

если n – четное число, то $\sqrt[n]{a}$ имеет смысл при $a \geq 0$

если n – нечетное число, то $\sqrt[n]{a}$ имеет смысл при любом a



Вычислить:
$$\sqrt[5]{32} + \sqrt[3]{-8}$$

Решение:

$$\sqrt[5]{32} = 2 \Leftrightarrow 2^5 = 32$$

$$\sqrt[3]{-8} = -2 \Leftrightarrow (-2)^3 = -8$$

$$\sqrt[5]{32} + \sqrt[3]{-8} = 2 - 2 = 0$$

Ответ: 0.

Найти концы отрезка $[n; n+1], n \in N$, которому принадлежит число $\sqrt[4]{52}$.

Решение:

$$\sqrt[4]{52} = a > 0, a^4 = 52$$

$$n^4 \le 52 \le (n+1)^4$$

$$n = 1 \Rightarrow 1^4 = 1 < 52$$

$$n = 2 \Rightarrow 2^4 = 16 < 52$$

$$n = 3 \Rightarrow 3^4 = 81 > 52$$

$$16 \le 52 \le 81 \Leftrightarrow \sqrt[4]{16} \le \sqrt[4]{52} \le \sqrt[4]{81} \Leftrightarrow 2 \le \sqrt[4]{52} \le 3$$

Ответ: 2; 3.

Решить уравнение $\sqrt[3]{3x+4} = -2$.

Решение:

$$(\sqrt[3]{3x+4})^3 = (-2)^3$$

$$3x + 4 = -8$$

$$3x = -12$$

$$x = -4$$

Ответ: -4.

Решить уравнение $\sqrt[4]{2-5x} = -4$.

Решение:

Если n – четное число, то $\sqrt[n]{a} \ge 0$.

Ответ: нет корней.

Повторим главное:

Корнем n-ой степени из неотрицательного числа a

(n=2,3,4,5,...) называют такое неотрицательное число, при возведении которого в степень n получается a.

Корнем нечетной степени n из отрицательного числа a (n=3, 5, 7, ...) называют такое отрицательное число, при возведении которого в степень n получается a.

$$\sqrt[n]{a}$$

a – подкоренное число, n – показатель корня

