МБОУ «Теньгушевская средняя общеобразовательная школа»

Урок геометрии 11 класс

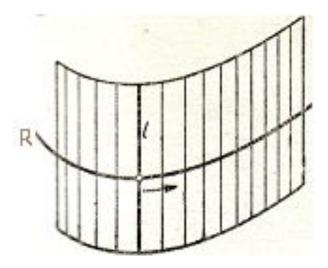
«Учитель-методист»: А.П.Родина

• Тема: «Цилиндр. Конус»

• **Цели:** расширить кругозор учащихся, углубить ЗУН учащихся по теме.

Цилиндрическая поверхность

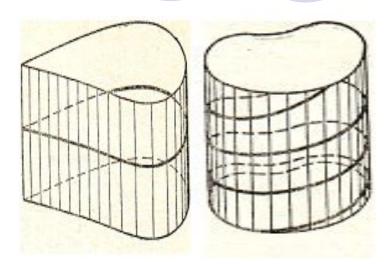
Представим себе прямую (), к⊠торая в пространстве перемещается параллельно самой себе так, что некоторая её точка движется по определенной линии (R)



Тогда прямая ⊠описывает некоторую поверхность, которая называется цилиндрической.

Определение: Цилиндрической поверхностью называется геометрическое место точек прямых, параллельных между собой и пересекающих данную линию. Любая из этих прямых называется образующей цилиндрической поверхности, а линия которую пересекают все образующие, называется её направляющей.

Замкнутая поверхность

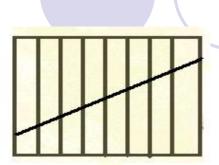


Если направляющая – замкнутая линия, то и поверхность замкнута.
Обратное утверждение неверно.

Все цилиндрические поверхности имеют одну важную особенность: они способны двигаться сами в себе. А именно: цилиндрическая поверхность не меняется при параллельном переносе пространства по Направлению её образующих. Поэтому все детали приборов и машин, которые совершают прямолинейные движения, имеют поверхность цилиндрической формы.

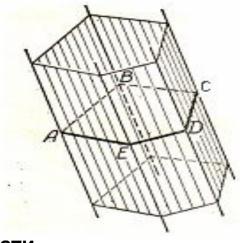
Классификация цилиндрических поверхностей

1)

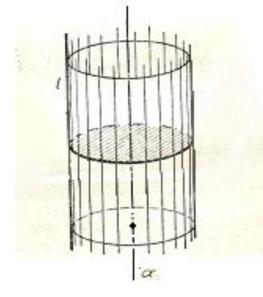


Направляющая – прямая В этом случае цилиндрическая Поверхность выражается в плоскость

2) Направляющая – замкнутая ломанная линия ABCDE В этом случае цилиндрическая поверхность называется <u>призматической</u> поверхностью



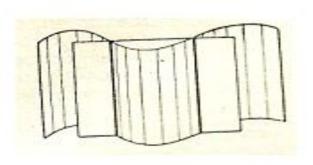
3)



Направляющая – окружность Если плоскость данной окружности перпендикулярна образующей, то получается прямая круговая цилиндрическая поверхность, т. е. цилиндр Прямая а – ось симметрии

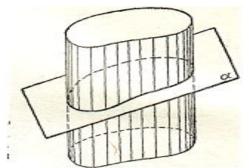
Сечения цилиндрической поверхности

1)



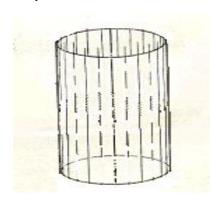
Если 🕻 🛚 цилиндрической поверхности и 🕽 // какой – то образующей, то некоторые образующие лежат в этой плоскости, а все другие ей параллельны .

2)



Если <u>с</u> хоть одну образующую, то она пересекает все образующие.

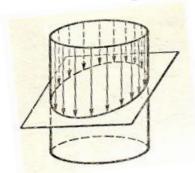
3) <u>Теорема:</u> Фигуры, полученные при пересечении цилиндрической поверхности двумя параллельными плоскостями, пересекающими её образующие, равны.



Тело ограниченное замкнутой цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её образующие, называется цилиндром.

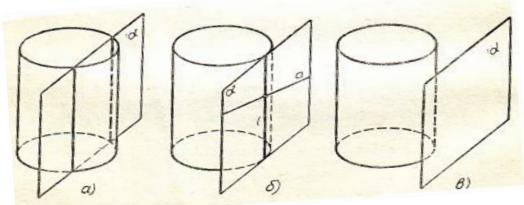
Сечения цилиндра

Из определения эллипса следует, что сечение цилиндра плоскостью, пересекающей образующие, есть эллипс.



Плоскость, параллельная основаниям, даёт в сечении окружность – частный вид эллипса

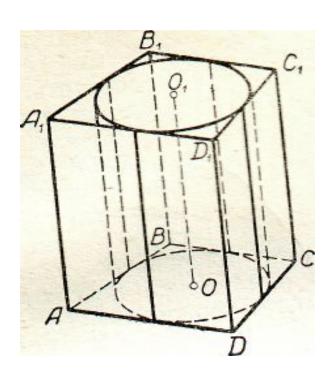
Плоскость, параллельная образующим может:



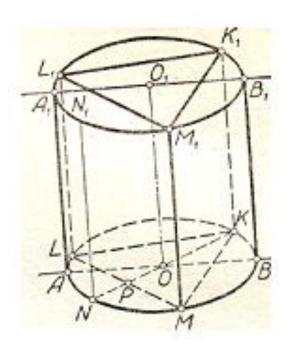
- а) содержать дв - разующие
- б) содержать ровно одну образующую
- в) п цилиндр не имеют общих точек.

Вписанный и описанный цилиндр

а) Цилиндр называется вписанным в прямую призму, когда его основания вписаны в основания призмы.



б) Цилиндр называется описанным около призмы, когда его основания описаны около оснований призмы.



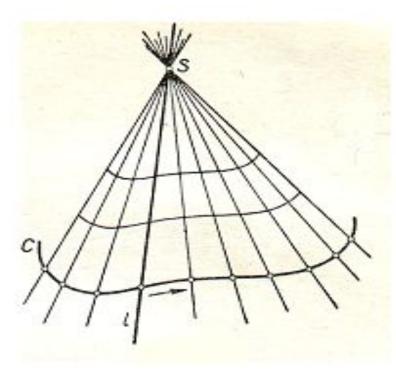
Коническая поверхность

1. Коническая поверхность называется г.м. прямых, проходящих через данную точку и пересекающих данную линию, причем эта точка не лежит на данной линии.

2. Любая прямая этого г.м. называется образующей, а линия пересекаемая всеми образующими, называется направляющей.

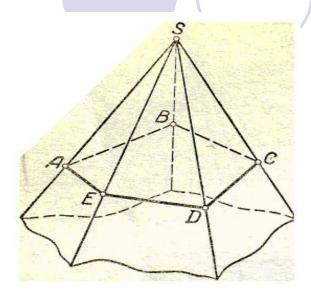
SI – образующая

CI - направляющая



Замкнутая поверхность

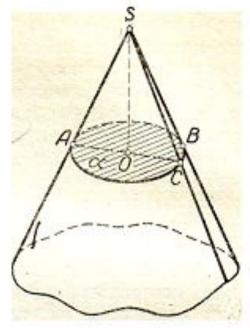
1.



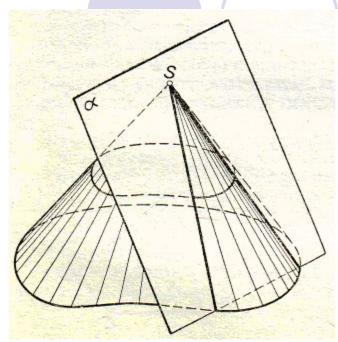
Направляющая – замкнутая

линия. В этом случае коническая поверхность называется многогранным углом. Многогранный угол естественно было бы назвать пирамидальной поверхностью.

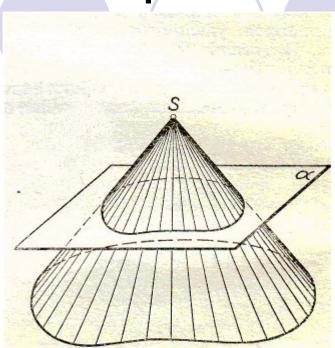
2. Направляющая – окружность, плоскость которой перпендикулярна отрезку, соединяющему её центр с вершиной. Получаем прямую круговую коническую поверхность. Как правило, под словом «конус» или «коническая поверхность» понимают этот частный случай.



Сечение конической поверхности

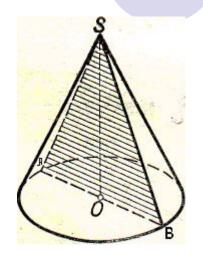


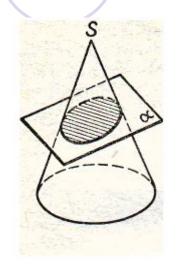
1. Если секущая плоскость проходит через вершину S, то часть образующих целиком лежит в ней, а часть – пересекает в одной и той же точке S.

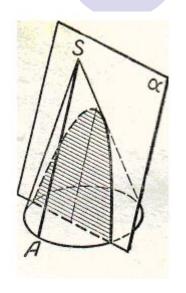


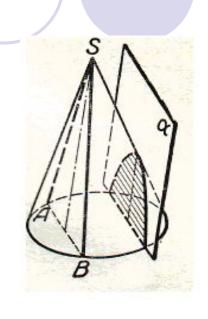
2. Если секущая плоскость не проходит через вершину S, то эта плоскость пересекает все образующие.

Сечение конуса







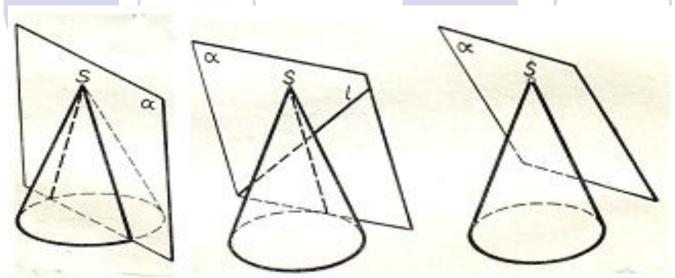


SAB – осевое сечение

∬ II SA (одной) то сечение – парабола

 \int I SA $u \int$ I SB (двум), то сечение – гипербола

Вписанный и описанный конус



lpha проходит через т.э и одну образующую SA, то lpha - касательная плоскость

$$\begin{bmatrix} a \in \alpha, \\ a \cap SA = M \end{bmatrix}$$
 \Rightarrow **а – касательная прямая**