

Содержание

Взаимное расположение прямых в пространстве

Параллельные прямые в пространстве

Теорема о параллельных прямых

<u>Лемма</u>

Теорема о параллельности трех прямых

Взаимное расположение прямой и плоскости Взаимное расположение прямой и плоскости Взаимное расположение прямой и плоскости в пространстве

Определение параллельности прямой и плоскости

Признак параллельности прямой и плоскости

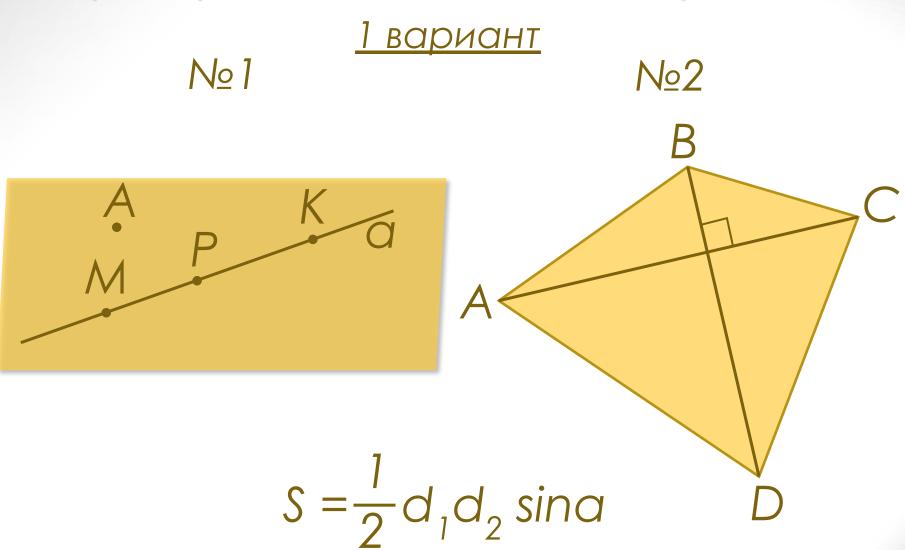
Свойства параллельных плоскостей (1 свойства параллельных пробрам параллельных пробрам параллельных пробрам параллельных пробрам параллельных пробрам параллельных параллельных

Свойства параллельных плоскостей (2 Свойства параллельных плоскостей (2° Свойства параллельных плоскостей (2°)

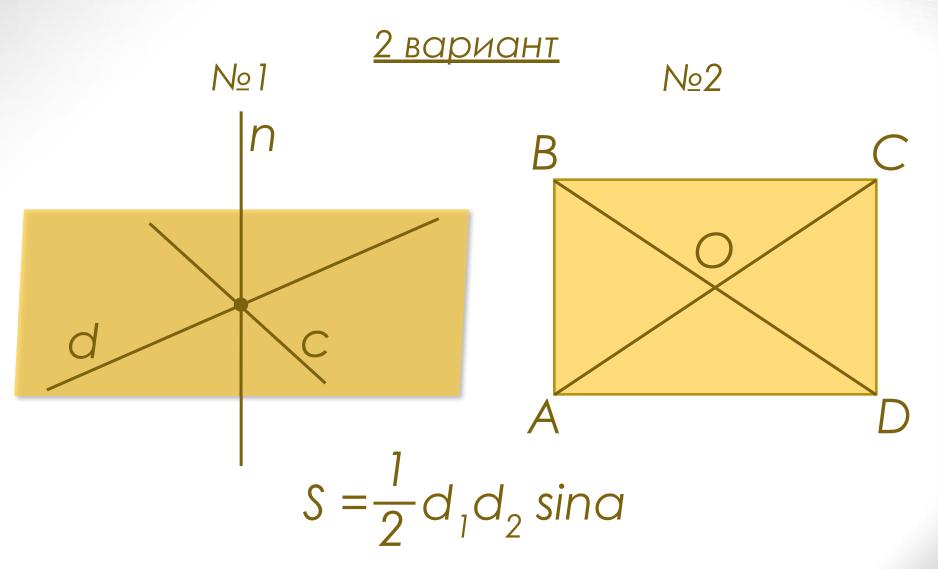
<u>Признак скрещивающихся</u> Признак скрещивающихся <u>Признак</u> скрещивающихся <u>прямых</u>

Теорема о скрещивающихся Теорема о скрещивающихся

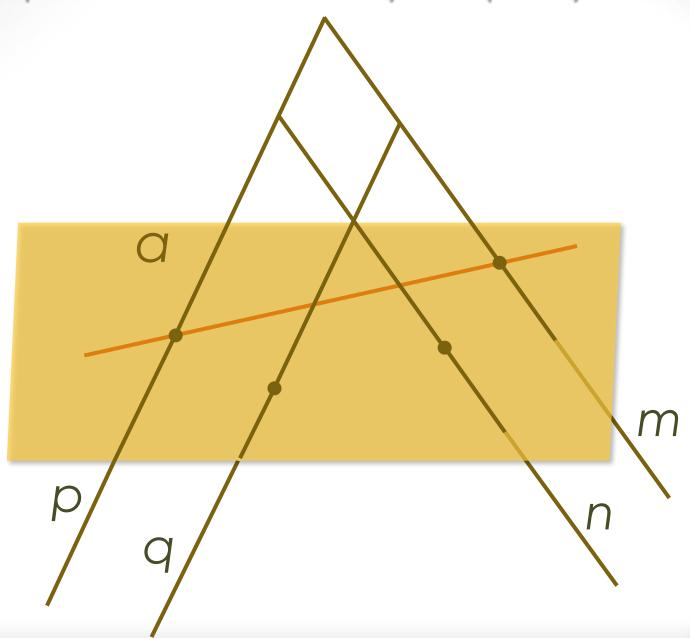
Проверка самостоятельной работы



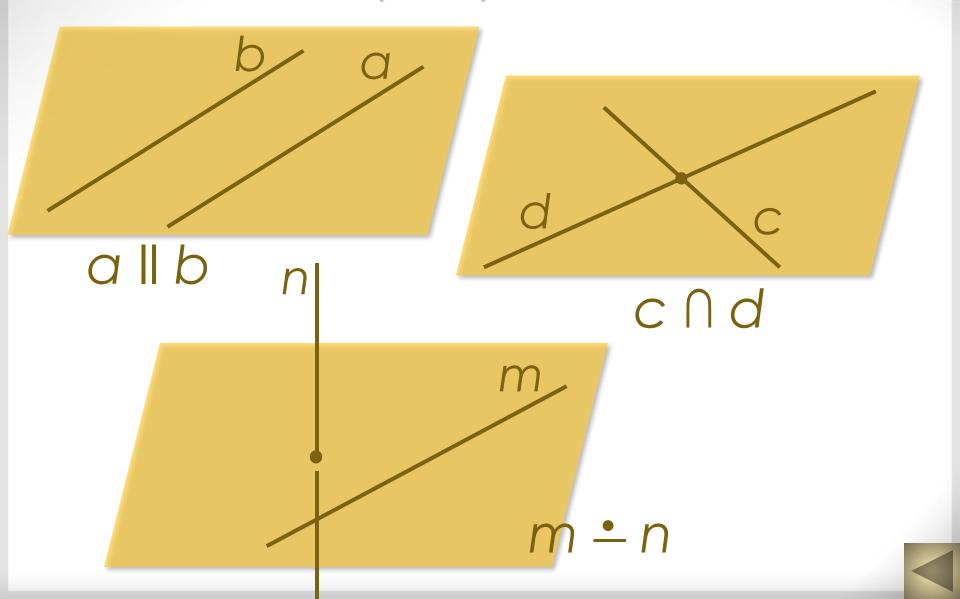
Проверка самостоятельной работы



Определите ошибку на рисунке



Взаимное расположение прямых в пространстве



Параллельные прямые в пространстве

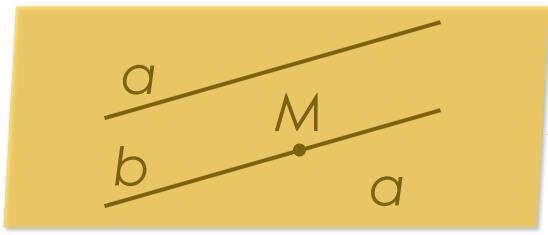
Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

allb

<u>a</u>
<u>b</u>

Теорема о параллельных прямых

Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.



Дано: а, М∉а

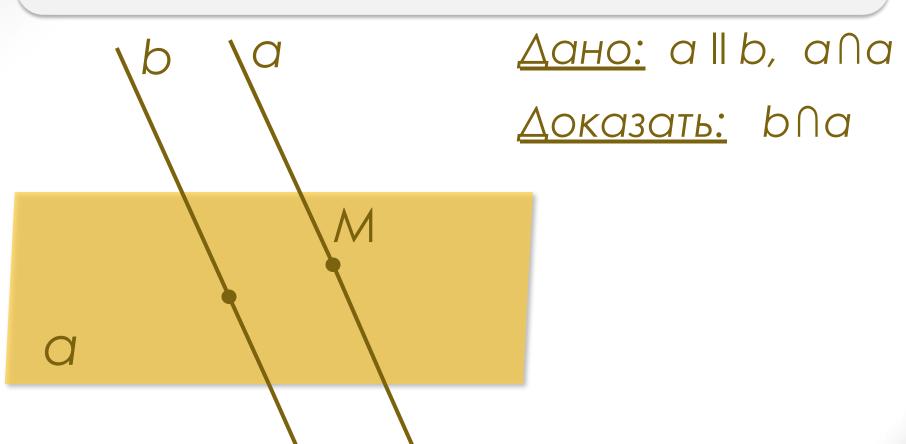
Доказать:

∃ b, M∈b, a ||

2) b -!

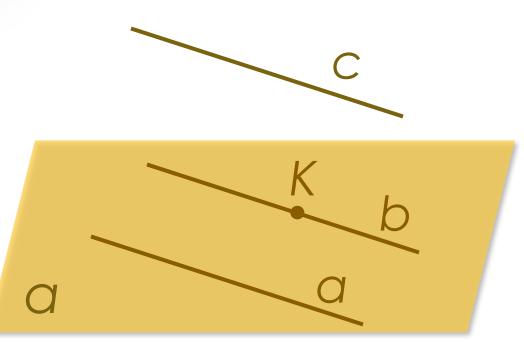
Nemma

Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.



Теорема о параллельности трех прямых

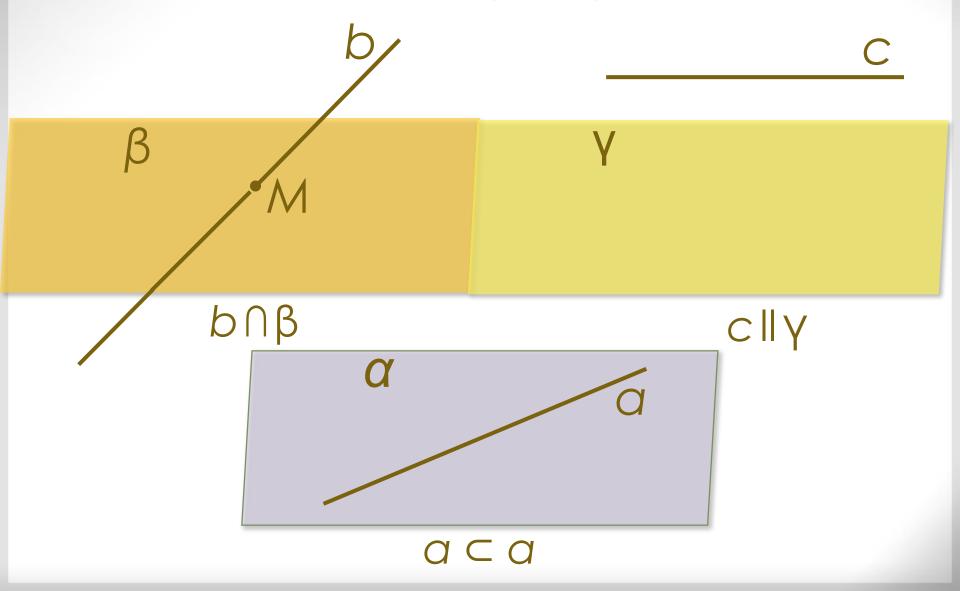
Если две прямые параллельны третьей прямой, то они параллельны.



<u>Дано:</u> allc; bllc

<u>Доказать:</u> allb $(a \subseteq a, b \subseteq a, \emptyset \cap b)$

Взаимное расположение прямой и плоскости в пространстве

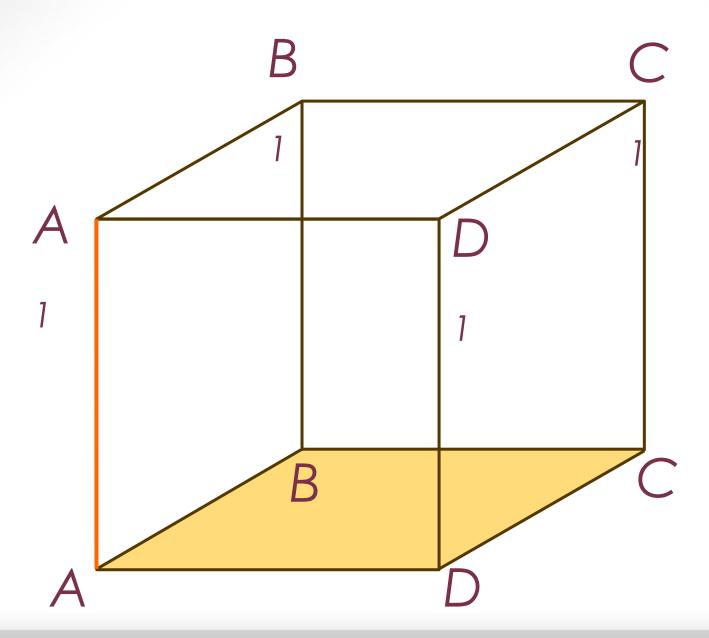


Определение параллельных прямой и плоскости

Прямая и плоскость называются параллельными, если они не имеют общих точек.

C

Пример



Признак параллельности прямой и плоскости

Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.

a

Дано:

 $a \not = a$, $b \subseteq a$, $a \parallel b$

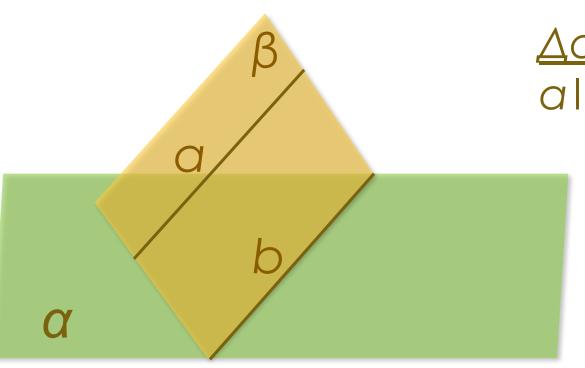
 Δ оказать: $a \parallel a$

b

a

Свойства параллельности прямой и плоскости (1°)

Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

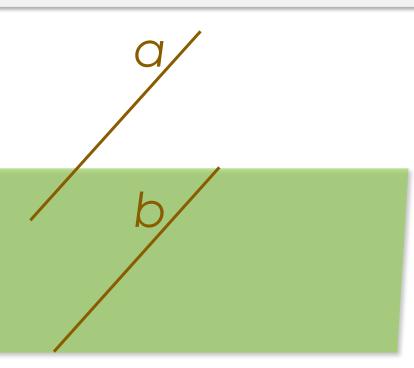


 \triangle ано: а \subset β , а ⊄ α , а $\|\alpha$, $\alpha \cap \beta = b$

<u>Доказать:</u> allb

Свойства параллельности прямой и плоскости (2°)

Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.



<u>Дано:</u> alla, allb

<u>Доказать:</u> b∥a или b ⊂ α

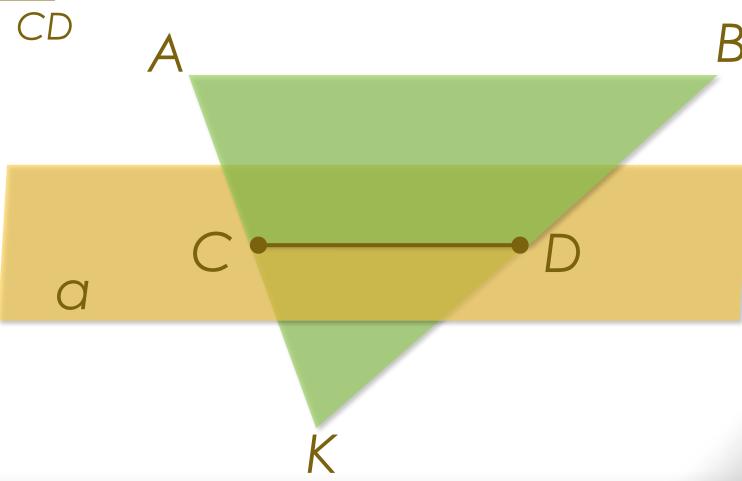
Решите задачу 1

 \triangle ано: \triangle ABK; AB IIa; (ABK)∩а = CD;

CK = 8; AB = 7; AC = 6

<u>Доказать:</u> АВ II CD

<u>Найти:</u> CD



Решите задачу 2

 Δ αHO: Δ ABC; Δ B \cap α = B_1 ; Δ C \cap α = C_1 ; Δ BC \cap α;

 $AB : BB_1 = 8 : 3; AC = 16 \text{ cm}$

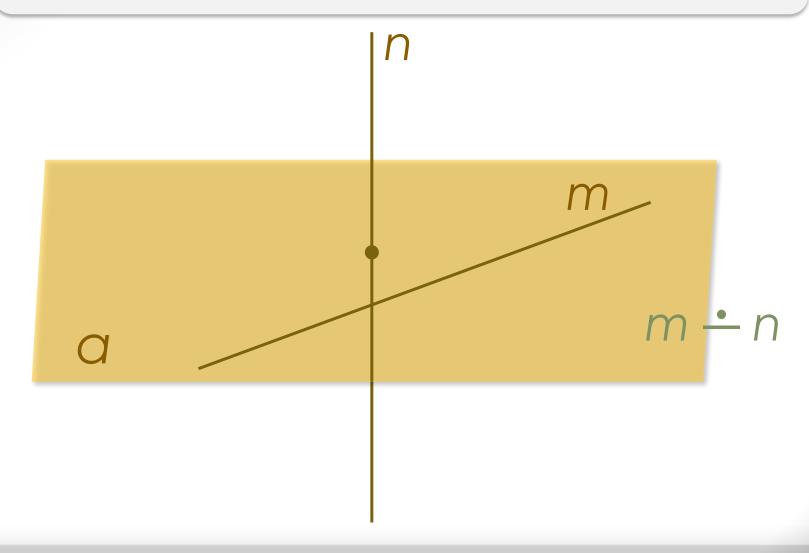
 \triangle оказать: $BCIIB_1C_1$

Найти: АС,

B

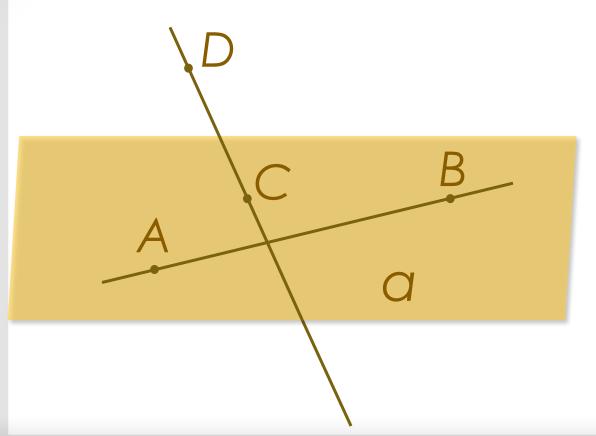
Скрещивающиеся прямые

Две прямые называются скрещивающимися, если они не лежат в одной плоскости.



Признак скрещивающихся прямых

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

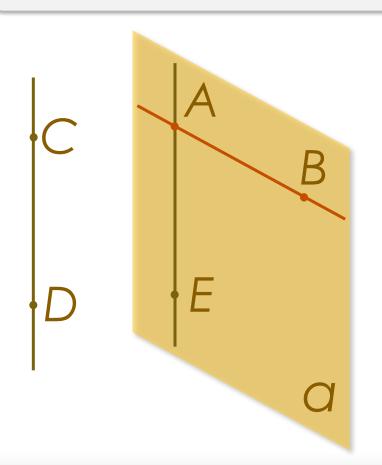


Дано: $AB \subset a$, $CD \cap a = C$, $C \notin AB$

Доказать: AB - CD

Теорема о скрещивающихся прямых

Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.



Дано: AB - CD

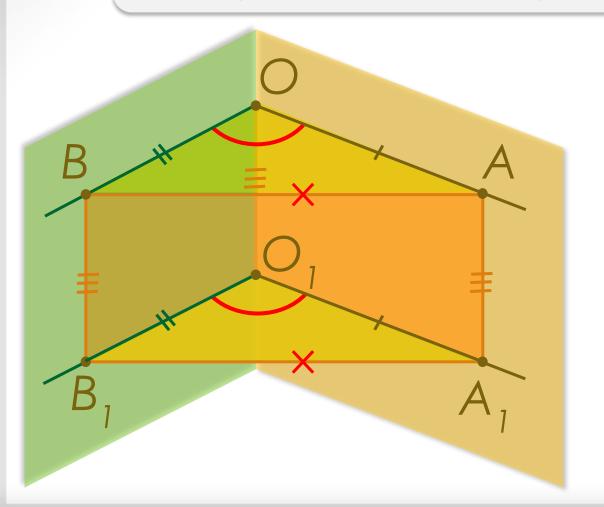
Доказать:

1) $\exists a, AB \subset a, a \parallel CD$

2) a -!

Теорема об углах с сонаправленными сторонами

Если стороны двух углов соответственно сонаправлены, то такие углы равны.



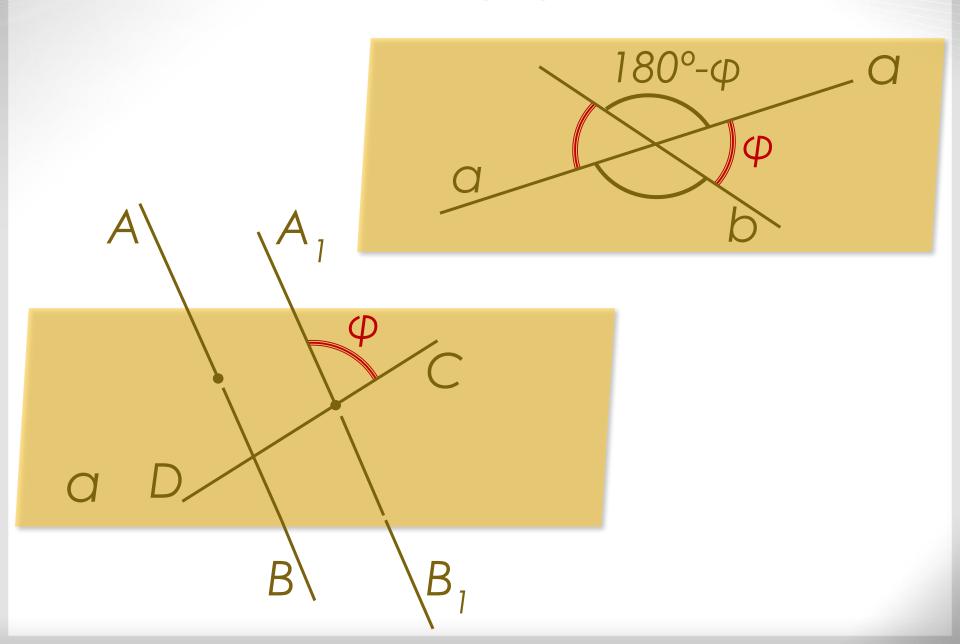
Дано:

$$OA \uparrow \uparrow O_1 A_1$$

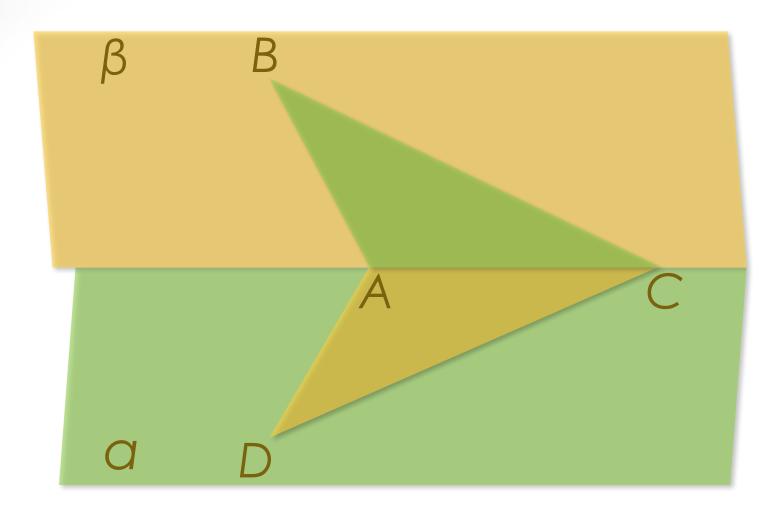
 $OB \uparrow \uparrow O_1 B_1$

$$\angle AOB = \angle A_1O_1B_1$$

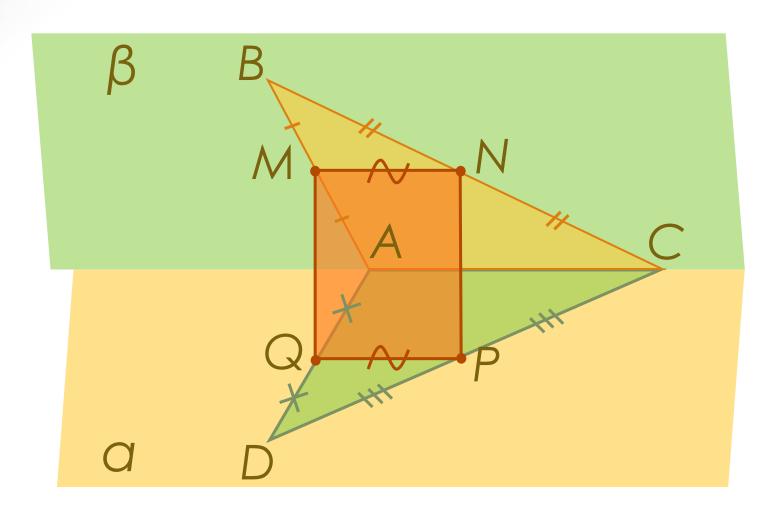
Угол между прямыми

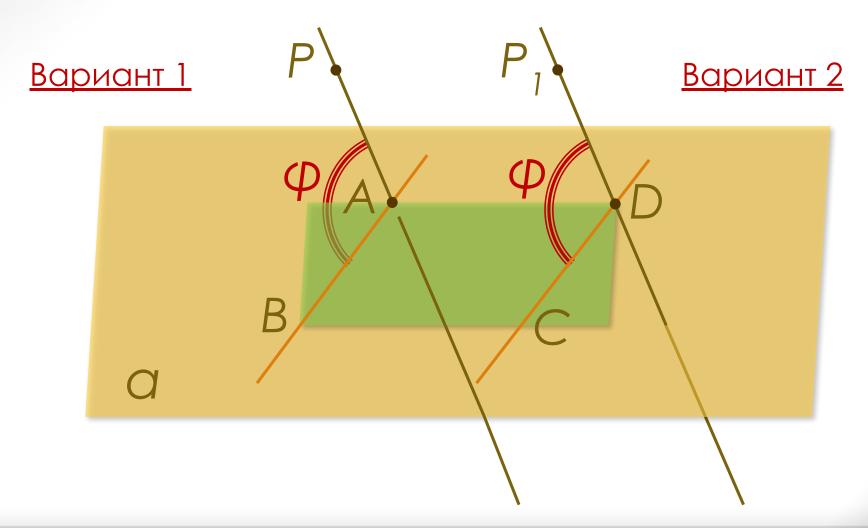


Пространственный четырехугольник



Пространственный четырехугольник





Использованы ресурсы

- Геометрия. 10 11 классы: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.]. 19-е изд. М.: Просвещение, 2010.
- Изучение геометрии в 10 11 классах: кн. для учителя / С.М. Саакян, В. Ф. Бутузов. 4-е изд., дораб. М.: Просвещение, 2010.