

ОСОБЕННОСТИ СТРУКТУРЫ СПЛАВА $FeCu_1Si_{16}B_6$ НА НАНОМЕТРОВОМ И МОРФОЛОГИЧЕСКОМ УРОВНЯХ

Выполнила: студентка группы Б – 8415 Ансович А. В Руководитель: профессор, к. ф. – м. н. Крайнова Г. С

Аморфные сплавы на основе металлов группы железа (Fe, Ni, Co), полученные закалкой из расплава на вращающийся с большой скоростью холодильник, обладают превосходными магнитными свойствами, низкими потерями на перемагничивание, высокой прочностью, что обеспечивает их применение в магнитных записывающих головках, трансформаторах и электронных устройствах. Спиннингованные ленты типа Finemet являются примером аморфнонанокристаллического состояния, необычность которого состоит в том, что кристаллическая фаза обладает упорядоченной атомной структурой, атомная структура аморфной фазы лишена трансляционной симметрии, обладая лишь ярко выраженным топологическим и композиционным ближним порядком. Уникальные физико-механические свойства таких двухфазных систем сочетают особенности как нанокристаллических, так и аморфных материалов. Поэтому важными в этой связи являются вопросы характера и организации структуры таких сложных объектов.

Актуальность исследования

C

Z – кластеры, как разновидности искаженных икосаэдрических координаций (а)-(j), 11-вершинный универсальный тетраблок (j), ¹

3

Спиральные структуры Бернала-Госсета, иллюстрирующие формирование некристаллического ближнего порядка в расплавах, нано- и аморфных металлах: a – спираль из тетраэдров Бернала, как частный случай; б – объемная регулярнотетраэдрическая структура, в – спиральная икосаэдрическая структура, формируемая слегка искаженными икосаэдрами, ^{1,2}

• • Формирование среднего порядка в стеклах и дальнего в нанокристаллических сплавах с учетом характера связи и трансформации ближнего порядка" В.А.Полухин, Э.Д. Курбанов, Р.М.Белякова, 2016г;

2) "Образование самоподобных пространственных структур в модуляционно – неустойчивых средах" В.М Куклин, "Электромагнитные явления", Т. 4, № 1 (13), 2004г;

Цели и задачи :

Целью данной работы является изучение характера структуры и анизотропии сплава FeCu₁Si₁₆B₆, полученного методом спиннингования. В связи с этим были поставлены следующие задачи:

- 1) отработать методику фурье-анализа с использованием программ QAVIS, KsaImage, GatanDigitalMicrograph;
- 2) провести спектральный анализ структуры быстрозакаленного сплава FeCu₁Si₁₆B₆ в нанометровом диапазоне и на морфоуровне с использованием электронно-микроскопических изображений;
- 3) изучить характер неоднородностей структуры спиннингованной ленты FeCu₁Si₁₆B₆ и анизотропию их распределения.

Аморфно – нанокристаллический сплав типа "Finemet" FeCu₁Si₁₆B₆

<u>Скорость охлаждения</u>: V =10⁶ К/с <u>Зазор между соплом тигля и барабаном</u>: 0,15 мм <u>Давление газа в камере</u>: 400 мбар <u>Давление в тигле</u>: 600 мбар <u>Толщина ленты</u>:20– 35 мкм

Область около

контактной

поверхности

10 nm

поверхность

Сканирующий

элетронный

микроскоп:

Carl Zeiss Crossbeam 1540XB

Контактная

поверхность

Метод исследования: Спектральный фурье – анализ.

ИПХ

ИЧХ

(распределение спектральной энергии в системе кольцевых зон)

(распределение спектральной энергии в системе угловых секторов)

36 секторов

Электронно-микроскопическое изображение структуры аморфного сплава состава FeCu₁Si₁₆B₆ с области, близкой к контактной поверхности

Интегрально частотная характеристика

Мода	Размер неоднородност и (нм)	Интенсивность (у. е)	
1	0,2	33,43	
2	0,45	7,7	
3	1,36	10,73	

Детальный анализ электронно-микроскопическое изображение структуры аморфного сплава с области, близкой к контактной поверхности

Электронно-микроскопическое изображение структуры аморфного сплава состава FeCu₁Si₁₆B₆ с области, близкой к свободной поверхности

1	Мода	Размер неоднородности (нм)	Интенсивность (у. е)
	1	0,21	32,94
	2	0,45	8
2	2	0,52	9,5
	3	1,36	14,14
2			

Интегрально пространственная характеристика

Детальный анализ электронно-микроскопическое изображение структуры аморфного сплава с области, близкой к свободной поверхности

Спектральный анализ морфоструктуры поверхностей раздела спиннингованной ленты FeCu₁Si₁₆B₆

Детальный анализ электронно-микроскопическое изображение свободной _ поверхности аморфного сплава

Характеристики структурных и морфологических неоднородностей спиннингованной ленты FeCu₁Si₁₆B₆

	СЭМ				ПЭМ			
	Контактная поверхность (contact)		Свободная поверхность (free)		Область близкая к контактной поверхности (contact)		Область близкая к свободной поверхности (free)	
	3	Л, мкм	3	Л, мкм	3	λ, нм	3	λ, нм
1	1,75	2,8	1	3,2	1,8	0,2	1,3	0,2
2	3	7,2	2	7,7	1,34	0,6	1,14	0,5
3	3,6	20,3	3,3	18,1	1	1,8	1	1,62

Средние значения длин волн неоднородностей нанометрового диапазона и морфоуровня

Диапазон размеров периодичностей	СЭМ(contact), Л	CЭM(free), Л	ΠЭΜ (contact), λ	ΠЭM(free), λ
1	2,8	3,2	0,2	0,2
2	7,2	7,7	0,6	0,5
3	20,3	18,1	1,8	1,62

Отношения значений длин волн неоднородностей нанометрового диапазона и морфоуровня

Отношения длин волн	СЭМ(contact), Л	CЭM(free), Λ	Π $ЭM$ (contact), $λ$	ΠЭM(free), λ
$\frac{\lambda_2}{\lambda_1}$	2,6	2,4	3	2,5
$\frac{\lambda_3}{\lambda_1}$	7,25	5,7	9	8,1

Статистический анализ упорядочения структуры сплава FeCu1Si16B6 с области близкой к контактной поверхности с использованием мер Лебега

Интегральные функции лебеговских мер для различных областей электронно-микроскопического изображения сплава FeCu₁Si₁₆B₆ (красная линия ИФМЛ белого шума)

▶1 ╋2 ☆3 ┿4 ₩5 ়6 ┿7

Дивергенция Кульбака, полученная от ИФМЛ (база – белый шум)

$$Liv\left[\frac{\mu(x_i)}{\widetilde{\mu(x_i)}}\right] = \sum_{\{x_i\}} \frac{|\mu(x_i) - \widetilde{\mu}(x_i)|}{\widetilde{\mu}(x_i)}$$

Дивергенция Кульбака (база – ИФМЛ)

Статистический анализ упорядочения структуры сплава FeCu1Si16B6 с области близкой к свободной поверхности с использованием интегральных функций мер Лебега

Интегральные функции лебеговских мер

Дивергенция Кульбака для ансамбля ИФМЛ

Выводы:

- Спектральный анализ электронно-микроскопических изображений структуры и характера морфологии спинингованной ленты FeCu₁Si₁₆B₆ позволил выделить три диапазона размеров неоднородностей нано и микрометрового: длинноволновый (λ₃ = 0,2 нм; Λ₃ = 2,8 мкм) средневолновый (λ₂ = 0,6 нм; Λ₂ = 7,5 мкм), коротковолновый (λ₁ = 1,7 нм; Λ₁ = 19,2 мкм). Таким образом, исследуемая структура является сложной, характеризуется широким спектром неоднородностей.
- Анизотропия структуры в нанометровом диапазоне определяется коротковолновыми неоднородностями, λ₁=0,2 нм, которые обладают максимальным значением ε, как на контактной, так и на свободной поверхностях. Формирование структур мезоуровня и длинноволнового диапазона сопровождается уменьшением коэффициента анизотропии.
- 3. Показано: интегральная анизотропия морфоструктуры спиннингованной ленты определяется неоднородностями длинноволнового диапазона. Коротковолновые периодичности свободной поверхности характеризуются меньшим показателем анизотропии (ε =1) по сравнению с контактной поверхностью (ε=1,75). Переход к неоднородностям высоких размеров приводит к линейному росту коэффициента анизотропии. Формирование среднего и дальнего порядка неоднородностей свободной поверхности сопровождается резким возрастанием анизотропии в их распределении и по значению є достигает значения коэффициента анизотропии контактной поверхности.
- 4. Сравнение спектральных характеристик локальных областей структуры быстрозакаленного сплава выявил разный уровень их упорядочения. Изменение характера анизотропии для обнаруженных диапазонов неоднородностей нано- и микроуровня отражено в инверсии коэффициента анизотропии є. Получено: формирование среднего и дальнего порядка в аморфно-нанокристаллическом сплаве происходит по принципу самоподобных пространственных структур.

Спасибо за внимание!

