

ОСОБЕННОСТИ СТРУКТУРЫ СПЛАВА FeCu₁Si₁₆B₆ HA НАНОМЕТРОВОМ И МОРФОЛОГИЧЕСКОМ УРОВНЯХ

Выполнила:

студентка группы Б – 8415 Ансович А. В Руководитель:

профессор, к. ф. – м. н. Крайнова Г. С

Введение

Аморфные сплавы на основе металлов группы железа (Fe, Ni, Co), полученные закалкой из расплава на вращающийся с большой скоростью холодильник, обладают превосходными магнитными свойствами, низкими потерями на перемагничивание, высокой прочностью, что обеспечивает их применение в магнитных записывающих головках, трансформаторах и электронных устройствах. Спиннингованные ленты типа Finemet являются примером аморфнонанокристаллического состояния, необычность которого состоит в том, что кристаллическая фаза обладает упорядоченной атомной структурой, атомная структура аморфной фазы лишена трансляционной симметрии, обладая лишь ярко выраженным топологическим и композиционным ближним порядком. Уникальные физико-механические свойства таких двухфазных систем сочетают особенности как нанокристаллических, так и аморфных материалов. Поэтому важными в этой связи являются вопросы характера и организации структуры таких сложных объектов.

Актуальность исследования

Z – кластеры, как разновидности искаженных икосаэдрических координаций (а)-(і), 11-вершинный универсальный тетраблок (j), ¹

Z15 <0,0,12,3>

Z16 <0,0,12,4>

Z14 <0,0,12,2>

формирование

некристаллического ближнего порядка в расплавах, нано- и аморфных металлах:

а – спираль из тетраэдров Бернала, как частный случай; б – объемная регулярно-

тетраэдрическая структура;

e — спиральная икосаэдрическая структура, формируемая слегка искаженными икосаэдрами, 1,2

[&]quot;Формирование среднего порядка в стеклах и дальнего в нанокристаллических сплавах с учетом характера связи и трансформации ближнего порядка" В.А Полухин, Э.Д. Курбанов, Р.М Белякова, 2016г;

[&]quot;Образование самоподобных пространственных структур в модуляционно – неустойчивых средах" В.М Куклин, "Электромагнитные явления", Т. 4, № 1 (13), 2004г;

Цели и задачи:

Целью данной работы является изучение характера структуры и анизотропии сплава $\mathrm{FeCu_1Si_{16}B_6}$, полученного методом спиннингования. В связи с этим были поставлены следующие задачи:

- 1) отработать методику фурье-анализа с использованием программ QAVIS, KsaImage, GatanDigitalMicrograph;
- 2) провести спектральный анализ структуры быстрозакаленного сплава ${\rm FeCu_1Si_{16}B_6}$ в нанометровом диапазоне и на морфоуровне с использованием электронно-микроскопических изображений;
- 3) изучить характер неоднородностей структуры спиннингованной ленты $FeCu_1Si_{16}B_6$ и анизотропию их распределения.

Аморфно — нанокристаллический сплав типа "Finemet" $FeCu_1Si_{16}B_6$

Скорость охлаждения: V =10⁶ K/c

Зазор между соплом тигля и барабаном: 0,15 мм

Давление газа в камере: 400 мбар

Давление в тигле: 600 мбар

Толщина ленты: 20 – 35 мкм

Просвечивающий электронный микроскоп: **FEI TITAN 300**

Область около контактной поверхности

Сканирующий элетронный микроскоп:
Carl Zeiss
Crossbeam 1540XB

Контактная поверхность

Свободная поверхность

Метод исследования: Спектральный фурье – анализ.

Дифракционная картина Франтгофера (спектр Фурье)

ИПХ

(распределение спектральной энергии в системе угловых секторов)

(распределение спектральной энергии в системе кольцевых зон)

Электронно-микроскопическое изображение структуры аморфного сплава состава ${\rm FeCu_1Si_{16}B_6}$ с области, близкой к контактной поверхности

Рентгенограмма спиннингованной $_{\circ \circ}$ ленты $FeCu_1Si_{16}B_6$

картина электронной дифракции

10 nm

Направление анизотропии

Интегрально частотная характеристика

Интегрально пространственная характеристика

Детальный анализ электронно-микроскопическое изображение структуры аморфного сплава с области, близкой к контактной поверхности

Электронно-микроскопическое изображение структуры аморфного сплава состава $FeCu_1Si_{16}B_6$ с области, близкой к свободной поверхности

Интегрально частотная характеристика

Интегрально пространственная характеристика

Детальный анализ электронно-микроскопическое изображение структуры аморфного сплава с области, близкой к свободной поверхности

Коротковолновый диапазон ($\lambda_1 \rightarrow 0,2$ нм)

Средневолновый (λ_2 → (0,4 нм – 0,7 нм))

Длинноволновый ($\lambda_3 \rightarrow (0.97 \text{ нм} - 2.27 \text{ нм})$).

Спектральный анализ морфоструктуры поверхностей раздела спиннингованной ленты FeCu₁Si₁₆B₆

2 45 78

Детальный анализ электронно-микроскопическое изображение

контактной поверхности аморфного сплава

Коротковолновый диапазон $(\Lambda_1 \rightarrow 4$ мкм - 1,55 мкм)

Средневолновый ($\Lambda_2 \rightarrow (10 \text{мкм} - 4.7 \text{ мкм})$)

Длинноволновый ($\Lambda_3 \rightarrow (25,3)$ мкм – 15,2 мкм)).

$$\epsilon_{160^{\circ}} = 3,4$$

$$\epsilon_{130^{\circ}} = 2,6$$

$$\varepsilon_{160^{\circ}} = 3$$

$$\varepsilon_{140^{\circ}} = 3$$

$$\varepsilon_{160^{\circ}} = 3,6$$

Детальный анализ электронно-микроскопическое изображение свободной ловерхности аморфного сплава

Коротковолновый диапазон $(\Lambda_1 \rightarrow 5$ мкм - 1,33 мкм)

Средневолновый ($\Lambda_2 \rightarrow (8,44)$ мкм -6,91 мкм))

 $\epsilon_{130^{\circ}} = 2$

Длинноволновый ($\Lambda_3 \rightarrow (25,3)$ мкм – 10,86 мкм)).

Характеристики структурных и морфологических неоднородностей спинингованной ленты $FeCu_1Si_{16}B_6$

	СЭМ				ПЭМ			
	Контактная поверхность (contact)		Свободная поверхность (free)		Область близкая к контактной поверхности (contact)		Область близкая к свободной поверхности (free)	
	3	Л, мкм	ε	Л, мкм	3	λ, нм	3	λ, нм
1	1,75	2,8	1	3,2	1,8	0,2	1,3	0,2
2	3	7,2	2	7,7	1,34	0,6	1,14	0,5
3	3,6	20,3	3,3	18,1	1	1,8	1	1,62

Средние значения длин волн неоднородностей нанометрового диапазона и морфоуровня

Диапазон размеров периодичностей	C9M(contact),	C3M(free), Λ	ΠЭΜ (contact), λ	ПЭМ(free), λ
1	2,8	3,2	0,2	0,2
2	7,2	7,7	0,6	0,5
3	20,3	18,1	1,8	1,62

Отношения значений длин волн неоднородностей нанометрового диапазона и морфоуровня

Отношения длин волн	СЭМ(contact), Л	C3M(free), Λ	ΠЭM(contact), λ	ПЭМ(free), λ	
$\frac{\lambda_2}{\lambda_1}$	2,6	2,4	3	2,5	
$\frac{\lambda_3}{\lambda_1}$	7,25	5,7	9	8,1	

Статистический анализ упорядочения структуры сплава FeCu1Si16B6 с области близкой к контактной поверхности с использованием мер Лебега

$$\mu\left(I_{j}(k)\right) = \sum_{(i)} \Delta I\left(k(i_{j})\right)$$

Интегральные функции лебеговских мер для различных областей электронно-микроскопического изображения сплава $FeCu_1Si_{16}B_6$ (красная линия ИФМЛ белого шума)

Дивергенция Кульбака, полученная от ИФМЛ (база – белый шум)

$$Liv\left[\frac{\mu(x_i)}{\widetilde{\mu(x_i)}}\right] = \sum_{\{x_i\}} \frac{|\mu(x_i) - \widetilde{\mu}(x_i)|}{\widetilde{\mu}(x_i)}$$

37

35

Статистический анализ упорядочения структуры сплава FeCu₁Si₁₆B₆ с области близкой к свободной поверхности с использованием интегральных функций мер Лебега

Выводы:

- 1. Спектральный анализ электронно-микроскопических изображений структуры и характера морфологии спиннингованной ленты $\mathrm{FeCu_1Si_{16}B_6}$ позволил выделить три диапазона размеров неоднородностей нано и микрометрового: длинноволновый ($\lambda_3 = 0.2$ нм; $\Lambda_3 = 2.8$ мкм) средневолновый ($\lambda_2 = 0.6$ нм; $\Lambda_2 = 7.5$ мкм), коротковолновый ($\lambda_1 = 1.7$ нм; $\Lambda_1 = 19.2$ мкм). Таким образом, исследуемая структура является сложной, характеризуется широким спектром неоднородностей.
- 2. Анизотропия структуры в нанометровом диапазоне определяется коротковолновыми неоднородностями, $\lambda_1 = 0.2$ нм, которые обладают максимальным значением ϵ , как на контактной, так и на свободной поверхностях. Формирование структур мезоуровня и длинноволнового диапазона сопровождается уменьшением коэффициента анизотропии.
- 3. Показано: интегральная анизотропия морфоструктуры спиннингованной ленты определяется неоднородностями длинноволнового диапазона. Коротковолновые периодичности свободной поверхности характеризуются меньшим показателем анизотропии (ε =1) по сравнению с контактной поверхностью (ε=1,75). Переход к неоднородностям высоких размеров приводит к линейному росту коэффициента анизотропии. Формирование среднего и дальнего порядка неоднородностей свободной поверхности сопровождается резким возрастанием анизотропии в их распределении и по значению ε достигает значения коэффициента анизотропии контактной поверхности.
- 4. Сравнение спектральных характеристик локальных областей структуры быстрозакаленного сплава выявил разный уровень их упорядочения. Изменение характера анизотропии для обнаруженных диапазонов неоднородностей нано- и микроуровня отражено в инверсии коэффициента анизотропии ε. Получено: формирование среднего и дальнего порядка в аморфно-нанокристаллическом сплаве происходит по принципу самоподобных пространственных структур.

Спасибо за внимание!