Основные понятия теории динамических систем

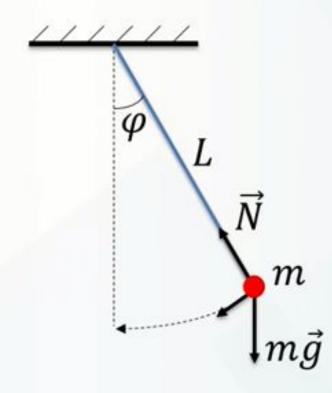
ДС

Под динамической системой понимают любой процесс или объект, для которого характерно:

- однозначно определенное состояние как совокупности некоторых величин в данный момент времени;
- задан закон (эволюция), который описывает изменения начального состояния с течением времени

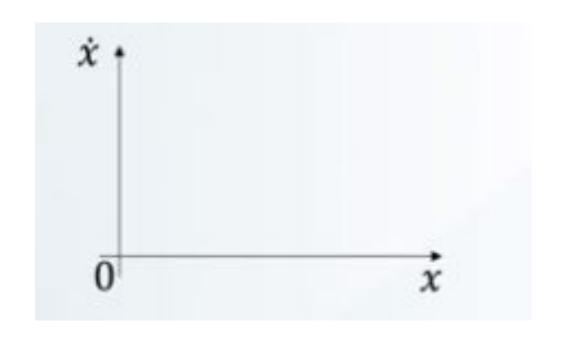
Математический маятник

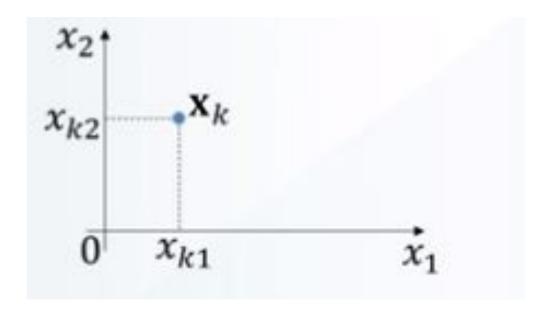
- $\{ \varphi(t_0), \dot{\varphi}(t_0) \}$ состояние системы
- $\ddot{\varphi} + \frac{g}{L}\sin\varphi = 0$ закон



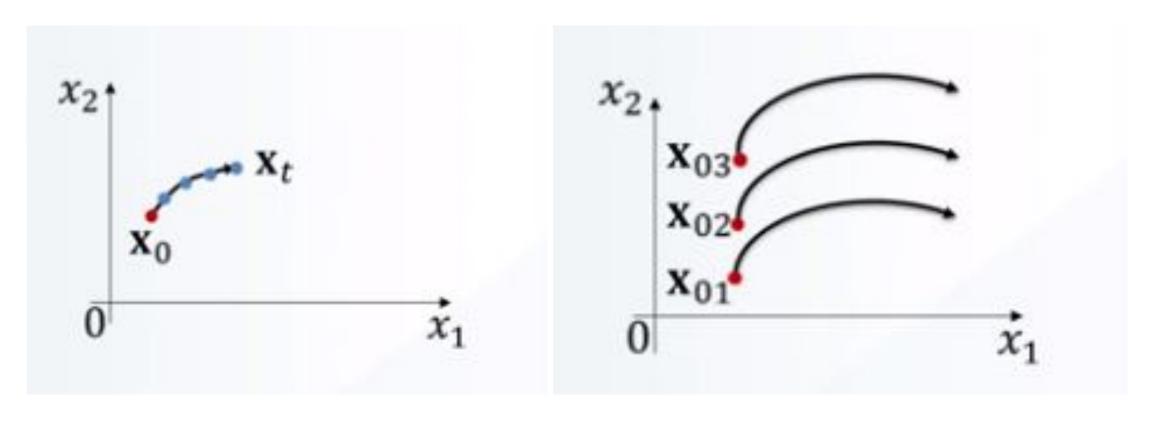
- **Число степеней свободы** наименьшее число независимых величин (координат), необходимых для однозначного определения состояния системы.
- Фазовое пространство пространство на координатных осях которого отложены значения переменных состояния системы: X_1, \dots, X_n , называемых фазовыми переменными.
- Изображающая точка точка, расположенная на фазовом пространстве.
- Фазовая траектория совокупность изображающих точек.
- Совокупность фазовых траекторий при различных начальных условиях называется фазовым портретом системы

Одномерное и двумерное фазовое пространство





Фазовая траектория и фазовый портрет



Формальное определение динамической системы

- фазовое пространство X, образующее полное метрическое пространство;
- множество моментов времени T;
- оператор эволюции Et некоторое отображение, которое каждому состоянию $x_o \in X$ в начальный момент времени $t_o \in T$ однозначно ставит в соответствие некоторое состояния $x_t \in X$ в любой другой момент времени $t \in T$.

Классификация динамических систем

- с непрерывным временем (континуальные системы), т.е. системы, которые задаются дифференциальными уравнениями:
- $\dot{X} = F(X)$
- системы с дискретным временем, N мерные отображения, например, геометрическая прогрессия:
- $\bullet x_{n+1} = f(x_n)$
- по виду оператора эволюции:
- - линейные:
- $E_t(x + x') = E_t(x) + E_t(x')$
- $E_t(\alpha \cdot x) = \alpha E_t(x)$

Классификация динамических систем

- - нелинейные:
- $E_t(x + x') \neq E_t(x) + E_t(x')$
- автономные, т.е. вектор F(x) зависит только от x и не зависит от времени:
- $\dot{X} = F(X)$
- неавтономные т.е. вектор F(x) зависит не только от координаты x, но зависит от времени:
- $\dot{x} = F(x, t)$

Классификация динамических систем

- детерминированные это все рассмотренные выше системы, когда нет шумов, случайных слагаемых.
- случайные динамические системы это автономные динамические системы, в которых есть шум определенного вида $\varepsilon_{_{\! +}}$
- $\dot{X} = F(x) + \varepsilon_t$

Устойчивость решения динамических систем

- Устойчивость по Ляпунову. Решение динамической системы устойчиво по Ляпунову, если для любого $\varepsilon > 0$ найдется число $\delta(\varepsilon) > 0$, такое, что если $||x_0 \pi_0|| < \delta$, то $||x(t) \pi(t)|| < \varepsilon$ для всех t ≥ 0.
- Таким образом, для двухмерной динамической системы любое решение, которое начинается в δ -окрестности точки π_0 остается внутри трубки с максимальным радиусом ε при всех

Устойчивость решения динамических систем

- **Асимптотическая устойчивость**. Если решение динамической системы устойчиво не только по Ляпунову, но и удовлетворяет соотношению
- lim $||x(t) \pi(t)|| = 0$ при условии $t \to \infty$ и $||x_0 \pi_0|| < \delta$, то решение является асимптотически устойчивым.
- Таким образом, все решения, достаточно близкие к π_0 в начальный момент времени постепенно сходятся к π (t) на больших временах. И если решение асимптотически устойчиво, то оно устойчиво и по Ляпунову.

Устойчивость решения динамических систем

- Экспоненциальная устойчивость. Если решение динамической системы устойчиво не только по Ляпунову, но из условия $||x_0 \pi_0|| < \delta$ следует, что $||x(t) \pi(t)|| \le \alpha ||x_0 \pi_0|| e^{-\beta t}$ для всех $t \ge 0$, то решение является асимптотически устойчивым.
- Все решения, близкие к π_0 в начальный момент времени сходятся к π (t) с большей или равной экспоненциальной скоростью. В отличии от предыдущего случая экспоненциальная устойчивость отличается лишь скоростью сходимости решения.

Одномерные динамические системы

- Одномерные динамические системы это динамические системы на прямой или динамические системы с одной с одной степенью свободы.
- Рассмотрим динамическую систему первого порядка, математическая модель которой задана в следующем виде:
- $\dot{X}_{t} = F(X_{t}), X_{t} = X(t), t \ge 0$

1. Аналитический подход решения задачи Коши

- Формулировка задачи Коши: известен закон эволюции и начальное состояние системы, требуется найти решение дифференциального уравнения или интеграл.
- Это самый мощный подход к анализу динамических систем. Но есть один недостаток к анализу нелинейных – не всегда удается получить аналитическое решение задачи.

2. Численное решение задачи Коши

- это численный эксперимент, применение численных методов. Однако не всегда удается получить фазовый портрет, так как коэффициенты динамической системы принимают непрерывный набор численных значений.
- Когда пытаются построить фазовую траекторию, теоретически нужно рассмотреть все возможные параметры решений, чтобы не упустить важные параметры, например, бифуркацию.
- Иногда этот подход применяют как дополнение к первому или третьему подходу.

3. Качественный анализ или метод фазовых траекторий

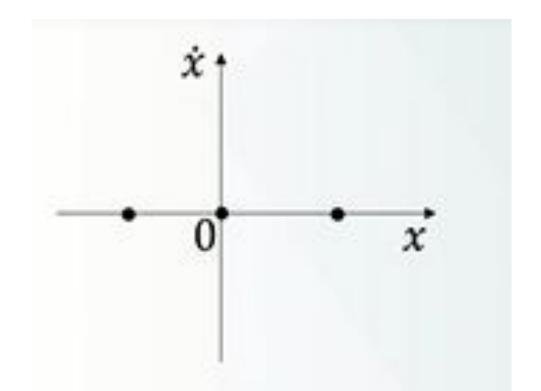
- Позволяет по заданному закону эволюции получить фазовый портрет.
- Применим как к линейным, так и к нелинейным динамическим системам.
- Основное достоинство этого метода глобальная картина поведения фазовых траекторий. Зная фазовый портрет можно однозначно определить поведение всей динамической системы.
- Есть и ограничения, связанные с числом степеней свободы.
- Для одномерных, двухмерных и трехмерных можно получить решение, а для четырехмерных и выше степеней свободы это становиться затруднительно.

Качественный анализ динамических систем

- Задача Коши в рамках качественного анализа формулируется следующим образом.
- Входные данные:
- $\dot{\mathbf{x}}_t = F(\mathbf{x}_0, \alpha),$
- где
- x_t € R^n вектор длин переменных;
- α € R^m вектор параметров системы.
- Необходимо найти компоненты (координаты) *α* при которых:
- равновесие системы является устойчивым;
- происходит локальная бифуркация в системе.

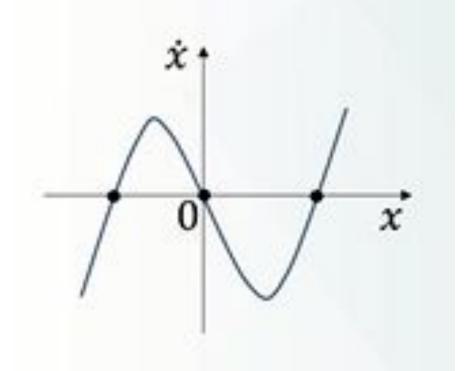
Алгоритм анализа одномерных динамических систем $\dot{x}_{t} = F(x_{t})$

• Шаг 1. Решить уравнение $F(x_t)$ и определить стационарные (фиксированные, равновесные) точки x^* Их может быть одна, две или три, все зависит от функции



Алгоритм анализа одномерных динамических систем $\dot{x}_{t} = F(x_{t})$

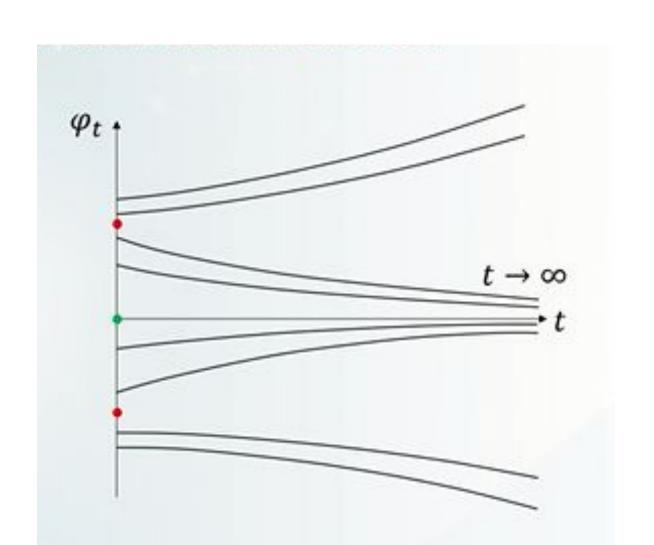
• Шаг 2. Изобразить фазовую траекторию $\dot{x}_t = F(x_t)$ на плоскости х0х. Особенность фазовой траектории в том, что она пересекает ось х в равновесных точках.



Алгоритм анализа одномерных динамических систем $\dot{x}_{t} = F(x_{t})$

- Шаг 3. Классифицировать стационарные точки, т е. определить какие точки являются асимптотически устойчивые, какие неустойчивые.
- Если в некоторой окрестности *x** фазовая траектория убывает, то *x** является асимптотически устойчивой точкой или **аттрактором**.
- Неустойчивая точка это **репеллер**, фазовая траектория в их окрестности возрастает.

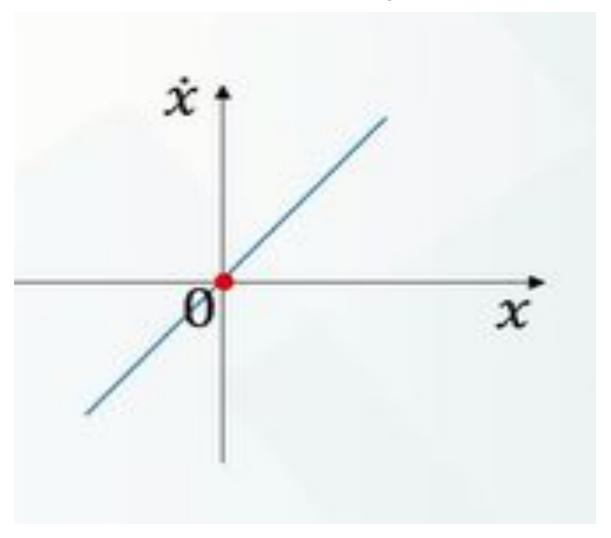
Поведение решений динамической системы вблизи аттрактора и репеллеров



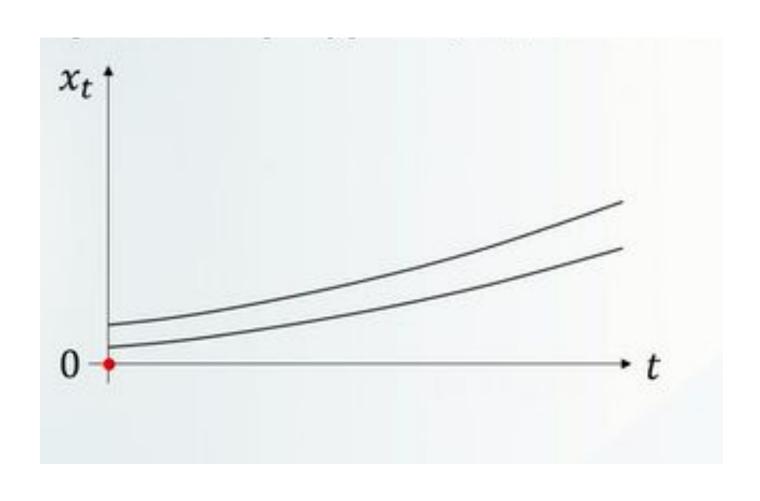
Модель Т. Мальтуса

- Т. Мальтус известный демограф, экономист. Он показал в своем труде «О росте народонаселения», что с увеличением населения, ростом популяции истощаются ресурсы.
- Адаптируем модель Мальтуса к моделированию роста производства продукции без ограничения на потребление ресурсов. Математическая модель представлена ниже:
- $\dot{X}_t = \alpha X_t$
- где
- $x_{t} \ge 0$ количество продукции;
- α > 0 постоянный темп роста продукции.

Модель Т. Мальтуса



Фазовые траектории модели Мальтуса



Выводы:

• Во-первых, неограниченное потребление ресурса приводит к неограниченному производству продукта. В реальной ситуации этого конечно же не происходит, следовательно, модель является неадекватной и необходимо перейти к другой модели.

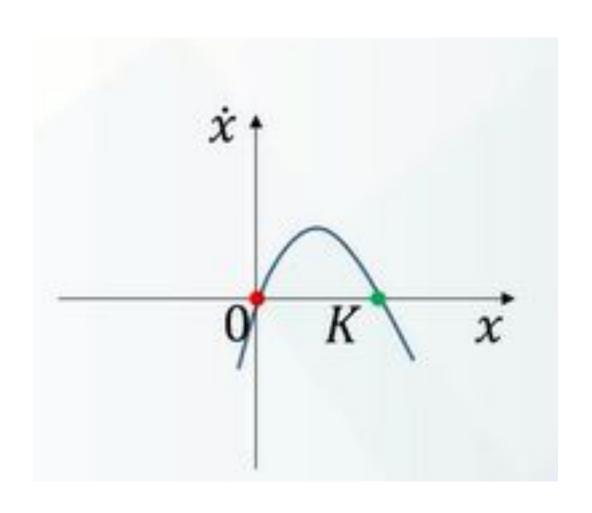
• Во-вторых, неограниченное производство приводит к истощению ресурсов.

Модель Ферхюльста

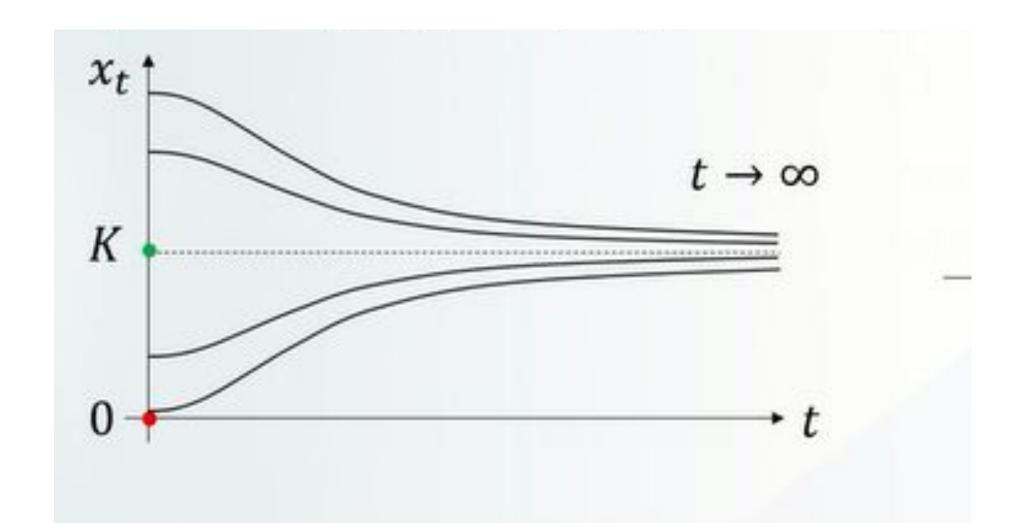
 Математическая модель роста производства продукции с учетом ограничения на потребление ресурсов представлена ниже:

- $\bullet \dot{x}_t = \alpha \bullet x_t (1 x_t / K),$
- где
- x_{t} ≥ 0 количество продукции;
- α > 0 постоянный темп роста продукции;
- *K* > 0 максимальное количество продукции, определяемое доступным ресурсом.

Фазовая плоскость модели Ферхюльста



Поведение фазовых траекторий модели Ферхюльста



Выводы

• ограниченное потребление ресурса приводит к ограниченному потреблению продукции;

• ограниченное производство не приводит к истощению ресурсов.