Vladislav Khvostov

Part \#1: Independent and parallel visual processing of ensemble statistics: Evidence from dual tasks

Part \#2: Confidence intervals in within-subject designs

Independent and paisillel visual processing of ensemble statistics: Evidence from dual tasks

Vladislav Khvostov and Igor Utochkin

An example

Greater or smaller than average?

Ensemble summary statistics

- The visual system can compute mean (Alvarez \& Oliva, 2009), numerosity (Halberda, Sires, \& Feigenson, 2006), variance/range (Dakin \& Watt, 1997)
- Ensemble statistics can be calculated for low-level features:
- color (Gardelle \& Summerfield, 2011),
- orientation (Parkes, Lund, Angelucci, Solomon, \& Morgan, 2001),
- size (Ariely, 2001),
and for high-level features:
- emotions, gender, etc. (Sweeny \& Whitney, 2014, Haberman \& Whitney, 2007, 2009).

Independent mechanisms

One mechanism

«GENERAL ENSEMBLE PROCESSOR»
Mean, Numerosity
Range

Correlational approach

Independenc

Prediction

Independent mechanisms

Parallelism

Parallel access (no interference) NUMEROSTITY VAARIANCE

Non-parallel access (interference)

REPORT REPORT REPORT シ

Parallelism test

Observers should compute only one statistics

Observers should compute both statistics

Parallelism test

Parallel access

MEĀN	REPORT
\{NUMEROSITY	REPORT
T-VARIANCE-	REPORT

Non-parallel access

Error in single task
 Error in dual task

Interference

No interference

Error in single task
 Error in dual task

Experiment 1

Whether mean and numerosity can be calculated independently and in parallel?
$\mathrm{N}=23$

Procedure

Bdsethearoditition 21bbdeks (MEAN七NUOKKRRSSITYY)

Design

MEAN baseline

NIMEROSITY baseline

BOTH

MEAN reported first NIMEROSITY reported first

MEAN reported second

NIMEROSITY reported

Data analysis

$$
\text { Error }=\left|\frac{\text { oobserver's response-correct response }}{\text { correct response }}\right|
$$

(1) Correlation between mean errors of 6 variables (across observers)
(2) Trial-by-trial correlation between an error
 in the mean judgment and an error in the numerosity judgment (separately for each participants)
(3) Comparison of mean errors in baseline and both conditions

Positive correlation between errors in reporting MEAN in different conditions

Reliable measure of MEAN calculation across

Auto-correlations for Numerosity judgements

Positive correlation between errors in reporting NUMEROSITY in different conditions

Reliable measure of NUMEROSITY calculation across

No correlation between errors in reporting different statiptics

Independence between MEAN and NUMEROSITY calculations

Individual correlations

Only one participant showed significant correlation between raw errors in both condition

Independence between MEAN and NUMEROSITY calculations

Average errors

No difference between mean errors in baseline condition and the first response in both condition
(both for NIMEROSITY and MEAN).

Conclusion

Mean and numerosity are calculated independently and in parallel

Experiment 2

Whether mean and range can be calculated independently and in parallel?
$\mathrm{N}=20$

Procedure

BBkellinearoditlition 211bbdekk (MEAN \oplus RRAGGEE)

Response 1

Design

6 "variables"

anara
 MEAN

MEAN baseline

RANGE

RANGE baseline

BOTH

MEAN
reported first
RANGE
reported first

MEAN reported second

RANGE reported

Auto-correlations for Mean judgements

Positive correlation between errors in reporting MEAN in different conditions

Reliable measure of MEAN calculation across

Auto-correlations for Range judgements

Positive correlation between errors in reporting RANGE

 in different conditionsReliable measure of RANGE calculation across conditions

No correlation between errors in reporting different statictics

Independence between MEAN and RANGE calculations

Individual correlations

No one showed significant correlation between raw errors in both condition

Independence between MEAN and RANGE calculations

Average errors

No difference between mean errors in baseline condition and the first response in both condition
(both for RANGE and MEAN).

Conclusions

Ensemble summary statistics (mean and numerosity, mean and range) are calculated

independently and in parallel

Parallel access
Independent mechanisms

Conclusions (2)

 Independent calculation of ensemble summary statistics means:(1) Different summaries are calculated by different (partly non-overlapping) brain regions.
(2) The result of one calculation does not influence the result of the other calculation (unlike in mathematical statistics)

Independent mechanisms

OPEN ACCESS
Article | August 2019

Independent and parallel visual processing of ensemble statistics: Evidence from dual tasks

Vladislav A. Khvostov; Igor S. Utochkin

+ Author Affiliations
Journal of Vision August 2019, Vol.19, 3. doi:10.1167/19.9.3

```
O vIEWS *
园 PDF
o
* TOOLS
```

Introduction
Experiment 1
Experiment 2A
Experiment 2B
General discussion
Acknowledgments
References

Abstract

The visual system can represent multiple objects in a compressed form of ensemble summary statistics (such as object numerosity, mean, and feature variance/range). Yet the relationships between the different types of visual statistics remain relatively unclear. Here, we tested whether two summaries (mean and numerosity, or mean and range) are calculated independently from each other and in parallel. Our participants performed dual tasks requiring a report about two summaries in each trial, and single tasks requiring a report about one of the summaries. We estimated trial-bv-trial correlations between

Thank you for being with me till the end of the first part

Confidence intervals in within-subject designs

*Based on Cousineau,

It is all from this 4-pages paper

Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson's method

Denis Cousineau

Université de Montréal

Within-subject ANOVAs are a powerful tool to analyze data because the variance associated to differences between the participants is removed from the analysis. Hence, small differences, when present for most of the participants, can be significant even when the participants are very different from one another. Yet, graphs showing standard error or confidence interval bars are misleading since these bars include the between-subject variability. Loftus and Masson (1994) noticed this fact and proposed an alternate method to compute the error bars. However, i) their

The problem

Different subjects can perform very differently which increases a size of error bars

Inconsistency between the results of ANOVA and the graph: ANOVA shows the effect, but the graph do not

ANOVA results

an experiment with two factors, the first with two levels and the second with 5 levels

Effect name	SS	dl	MS	F	
Factor 1	10621	1	10621	76.8	
Error	2073	15	135		
Factor 2	11784	4	8196	16.4	$* * *$
Error	4378	60	72.9		
Interaction	2250	4	562	6.52	$* * *$
Error	5171	60	86.2		

[^0]
Results of the experiment

Error bars show the mean ± 1 standard error.

The individual results of the 16 participants

The first level of the first factor.

The second level of the first

The solution of the problem

$$
Y=X_{i j}-\bar{X}_{1}+\bar{X}
$$

results of the the the
 $Y=$ participant in a particular
 _ participant + mean
 group mean

Example of calculations
Condition

Participant
1
2
3

Mean

1	2	3	Mean
550	580	610	580
605	635	655	635
660	690	710	690
605	635	655	635

Condition

Participant	1	2	3	Mean
1	$550-580+635=60$	$\begin{gathered} 580-580+635=63 \\ 5 \end{gathered}$	$\begin{gathered} 610-580+635=66 \\ 5 \end{gathered}$	580
2	$605-635$	$635-635+635$	$655-635+635$	635
3	$\begin{gathered} 660-6590 \\ +635 \end{gathered}$	$\begin{gathered} 690-690 \\ +635 \end{gathered}$	$\begin{gathered} 710-690 \\ +635 \\ \hline \end{gathered}$	690
Mean	605	635	655	635

The individual results of the 16 participants after the individual differences were removed

The graph after the individual differences were removed

Error bars show the mean ± 1 standard error.
$Y=\begin{gathered}\text { results of the } \\ \text { participant in } \\ \text { particular condition }\end{gathered} \quad \begin{gathered}\text { the } \\ \text { participant } \\ \text { mean }\end{gathered}+\underset{\text { group }}{\text { thean }}$

NOTE: Y is only useful for graphing purposes; for the analyses, continue to use the original data.

Example from real life

Error bars show SEM.

Example from real life

Error bars show SEM.

Hope you will use it

Thank you
For your attention

[^0]: ***: $p<.001$

