

Vladislav Khvostov

Part #1: Independent and parallel visual processing of ensemble statistics: Evidence from dual tasks

Part #2: Confidence intervals in within-subject designs

Part#1

Independent and parallel visual processing of ensemble statistics: Evidence from dual tasks

spoiler

Vladislav Khvostov and Igor Utochkin

An example

Greater or smaller than average?

Ensemble summary statistics

- The visual system can compute <u>mean</u> (Alvarez & Oliva, 2009), <u>numerosity</u> (Halberda, Sires, & Feigenson, 2006), <u>variance/range</u> (Dakin & Watt, 1997)
- Ensemble statistics can be calculated for low-level features:
 - color (Gardelle & Summerfield, 2011),
 - orientation (Parkes, Lund, Angelucci, Solomon, & Morgan, 2001),
 - **<u>size</u> (**Ariely, 2001),
 - and for high-level features:
 - emotions, gender, etc. (Sweeny & Whitney, 2014, Haberman & Whitney, 2007, 2009).

maepenaenc

e

Independent mechanisms

MEAN

NUMEROSITY

RANGE

One mechanism

INPUT

«GENERAL ENSEMBLE PROCESSOR» Mean, Numerosity, Range

Correlational approach

Independenc

Prediction

8

Independent mechanisms

MEAN

NUMEROSITY

RANGE

Different sources of noise

No correlation between errors in reports of different statistics

One mechanism

→

«GENERAL ENSEMBLE PROCESSOR» Mean, Numerosity, Range

One source of noise

between errors in reports of different statistics

Parallelism

Parallel access (no interference)

Non-parallel access (interference)

REPORT

Parallelism test

Single task

"Calculate MEAN"

MEAN report

Dual task

"Calculate MEAN and RANGE"

RANGE report

Observers should compute only one statistics

Observers should compute both statistics

Parallelism test

Access

Prediction

Parallel access

REPORT

No interference

Error in _ Error in dual task

Non-parallel access

REPORT

Interference

Experiment 1

Whether mean and numerosity can be calculated independently and in parallel?

N = 23

Procedure

Basethe condition 2 bbbookk (MEAN-bNUWMERRSSTYY)

Design 6 "variables" MEAN baseline **MEAN** NIMEROSITY baseline **NIMEROSITY** MEAN reported **MEAN** reported first second **BOTH NIMEROSITY NIMEROSITY** reported first reported

Data analysis

- (1) Correlation between mean errors of 6 variables (across observers)
- (2) Trial-by-trial correlation between an error in the mean judgment and an error in the numerosity judgment (separately for each participants)

(3) Comparison of mean errors in baseline and both conditions

Independenc e

Parallelism

Positive correlation between errors in reporting MEAN in different conditions

Reliable measure of MEAN calculation across

Positive correlation between errors in reporting NUMEROSITY in different conditions

Reliable measure of NUMEROSITY calculation across

No correlation between errors in reporting different statistics

Independence between MEAN and NUMEROSITY calculations

Individual correlations

Only one participant showed significant correlation between raw errors in both condition

Independence between MEAN and NUMEROSITY calculations

Average errors

No difference between mean errors in baseline condition and the first response in both condition (both for NIMEROSITY and MEAN).

Conclusion

Mean and numerosity are calculated independently and in parallel

Experiment 2

Whether mean and range can be calculated independently and in parallel?

N = 20

Procedure

Basetine condition 21bbbooks (MEAN-BRANGE)

Auto-correlations for Mean judgements r = .698mean reported second p < .001mean reported first p = .001mean reported

0.2

0.2

0.3

mean baseline

0.5

0.6

Positive correlation between errors in reporting MEAN in different conditions

mean baseline

0.6

mean reported first

0.5

Reliable measure of MEAN calculation across

<u>Positive correlation</u> between errors in reporting RANGE in different conditions

Reliable measure of RANGE calculation across conditions

Cross-correlations for Mean and Range judgements

No correlation between errors in reporting different statistics

Independence between MEAN and RANGE calculations

Individual correlations

No one showed significant correlation between raw errors in both condition

Independence between MEAN and RANGE calculations

Average errors

No difference between mean errors in baseline condition and the first response in both condition (both for RANGE and MEAN).

Conclusions

Ensemble summary statistics (mean and numerosity, mean and range) are calculated

independently

and

in parallel

Independent mechanisms

MEAN

RANGE

REPORT

REPORT

REPORT

Conclusions (2)

Independent calculation of ensemble summary statistics means:

(1) Different summaries are calculated by different (partly non-overlapping) brain regions.

(2) The result of one calculation does not influence the result of the other calculation (unlike in mathematical statistics)

For doplease

Khvosto process Journal

August 2019

Volume 19, Issue 9

< ISSUE

Jump To...

Introduction

Experiment 1

Experiment 2A

Experiment 2B

General discussion

Acknowledgments

References

OPEN ACCESS

Article | August 2019

Independent and parallel visual processing of ensemble statistics: Evidence from dual tasks

Vladislav A. Khvostov; Igor S. Utochkin

+ Author Affiliations

Journal of Vision August 2019, Vol.19, 3. doi:10.1167/19.9.3

Abstract

The visual system can represent multiple objects in a compressed form of ensemble summary statistics (such as object numerosity, mean, and feature variance/range). Yet the relationships between the different types of visual statistics remain relatively unclear. Here, we tested whether two summaries (mean and numerosity, or mean and range) are calculated independently from each other and in parallel. Our participants performed dual tasks requiring a report about two summaries in each trial, and single tasks requiring a report about one of the summaries. We estimated trial-by-trial correlations between

risual ısks // 9.9.3

Thank you for being with me till the end of the first part

Part#2

Confidence intervals in within-subject designs

*Based on Cousineau,

It is all from this 4-pages paper

Tutorials in Quantitative Methods for Psychology 2005, Vol. 1(1), p. 42-45.

DOI: 10.20982/tqmp.01.1.p042

Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson's method

Denis Cousineau

Université de Montréal

Within-subject ANOVAs are a powerful tool to analyze data because the variance associated to differences between the participants is removed from the analysis. Hence, small differences, when present for most of the participants, can be significant even when the participants are very different from one another. Yet, graphs showing standard error or confidence interval bars are misleading since these bars include the between-subject variability. Loftus and Masson (1994) noticed this fact and proposed an alternate method to compute the error bars. However, i) their

The problem

Different subjects can perform very differently which increases a size of error bars

Inconsistency between the results of ANOVA and the graph: ANOVA shows the effect, but the graph do not

ANOVA results

an experiment with two factors, the first with two levels and the second with 5 levels

Effect name	SS	dl	MS	F	
Factor 1	10621	1	10621	76.8	***
Error	2073	15	135		
Factor 2	11784	4	8196	16.4	***
Error	4378	60	72.9		
Interaction	2250	4	562	6.52	***
Error	5171	60	86.2		

^{***:} *p* < .001

Results of the experiment

Error bars show the mean ± 1 standard error.

The individual results of the 16 participants

The first level of the first factor.

The second level of the first

The solution of the problem

$$Y = X_{ij} - \overline{X}_1 + \overline{X}$$

results of the
$$Y = \begin{array}{ccc} & \text{results of the} & \text{the} & \text{the} \\ Y = \begin{array}{ccc} & \text{participant in a} & \text{participant} & \text{participant} & \text{group} \\ & \text{condition} & \text{mean} & \text{mean} \end{array}$$

Example of calculations

		Condition		
Participant	1	2	3	Mean
1	550	580	610	580
2	605	635	655	635
3	660	690	710	690
Mean	605	635	655	635
	n	Condition		
Participant	1	2	3	Mean
1	550-580+635=60	580-580+635=63 5	610-580+635=66	580
2	605 - 635	635 - 635 +635	655 - 635 + 635	635
	1625			
3	66 6 43590 +635	690 – 690 +635	655 - 635 +635 710 - 690 +635	690

The individual results of the 16 participants after the individual differences were removed

The first level of the first factor.

The second level of the first

The graph after the individual differences were removed

Error bars show the mean ± 1 standard error.

$$Y = X_{ij} - \overline{X}_1 + \overline{X}$$

NOTE: Y is only useful for graphing purposes; for the analyses, continue to use the original data.

Example from real life

Error bars show SEM.

Example from real life

Hope you will use it

Thank you For your attention