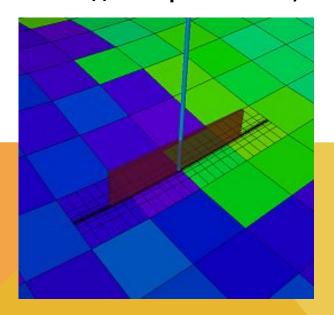
ПОДХОДЫ К МОДЕЛИРОВАНИЮ ГРП

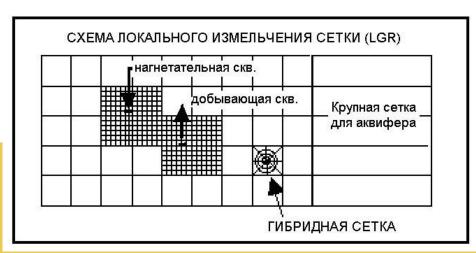
ИБРАГИМОВА Д. РНМ-16-04.05

ЛОКАЛЬНОЕ ИЗМЕЛЬЧЕНИЕ СЕТКИ

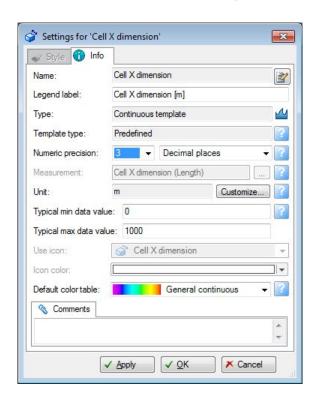
+

Большая точность расчёта


Учёт процессов, происходящих в трещине

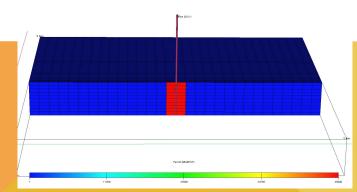

-

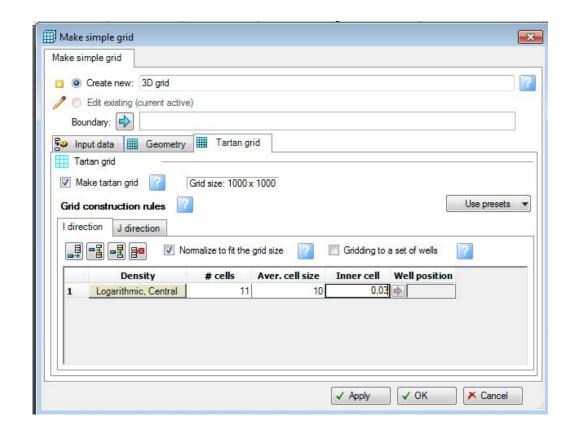
Значительное время расчёта

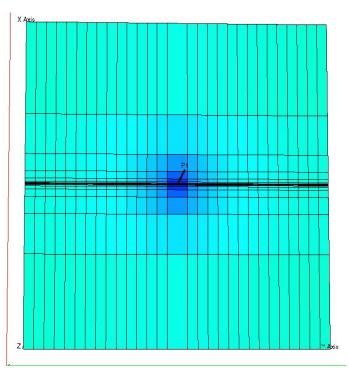

Трудфімическое задание трещин в tartan-сетках (PETREL)

2. Эквивалентное задание трещин (LGR с ячейками, превышающими диаметр скважины)

TARTAN-СЕТКИ




B Petrel


Увеличение количества знаков после запятой:

Templates – Geometrical templates – Cell X dimension

Processes – Utilities – Make simple grid – Tartan Ставим галочку «Make Tartan Grid» Density – logarithmic, central Нечётное кол-во ячеек

ПРОДУКТИВНОСТЬ СКВАЖИНЫ

+

Легко корректируется

Используется ключевое слово WPIMULT

Недхидываются дараметры се-оценых

$$Q = PI \cdot \Delta P$$

СКИН-ФАКТОР

+

Легко корректируется

Даёт хорошую сходимость, если размеры ячеек сравнимы с полудлиной трещин (50-100 м)

MEAN MEAN MEAN AND ALL PROPERTIES AND ALL PROPERTIE

$$Q = \frac{2\pi k_1 h}{\mu} \frac{p_c - p_w}{\ln R_c / r_w + s_f}, \qquad s_f = \ln r_w / r_f < 0$$

Формула эквивалентного скин-фактора М. Экономидеса для трещины бесконечной проводимости

$$S = \ln \frac{4r_{\rm CK}}{L},$$

Зависимость М.Пратса для трещины ограниченной проводимости

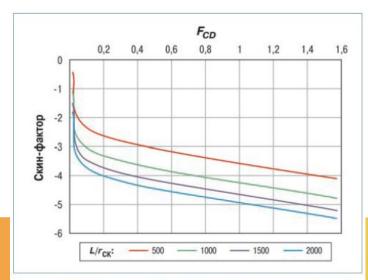


Рис. 1. Зависимость эквивалентного скин-фактора от безразмерной проводимости трещины $F_{\rm CD}$ при различном соотношении $L/r_{\rm ok}$

Формула Астафьева для трещины неограниченной проводимости

$$S = -\ln\frac{l}{2r_w} + \sum_{n=1}^{\infty} \frac{1}{n(2nF_{CD} + 1)}$$

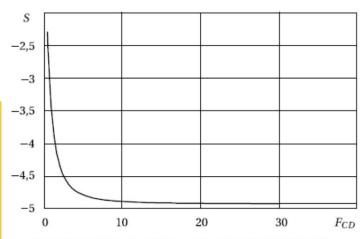


Рис. 2. Зависимость величины скин–фактора S от величины F_{CD}

НАПРАВЛЕННЫЕ МНОЖИТЕЛИ ПРОВОДИМОСТИ

+

Вносятся минимальные изменения в модель

-

Можны нов елизоват М Чели Фрещина выходит за границы ячеек (создаёт гидродинамическую связь с ранее разобщёнными объектами)

Указывается в ключевых словах MULTX/MULTX-, MULTY/MULTY-

СОЗДАНИЕ ДОПОЛНИТЕЛЬНЫХ СОЕДИНЕНИЙ

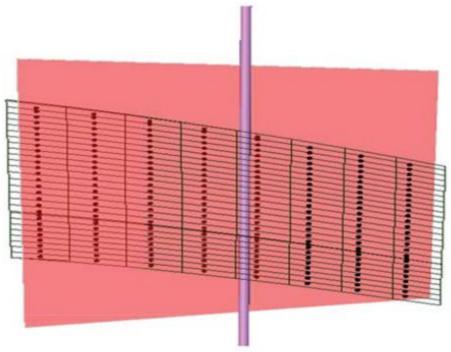
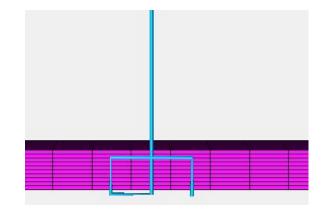
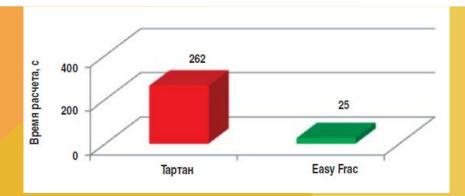


Рис. 1. Ячейки сетки, вскрытые трещиной (розовая плоскость), для которых создаются дополнительные соединения

СОЗДАНИЕ ДОПОЛНИТЕЛЬНЫХ СОЕДИНЕНИЙ


+

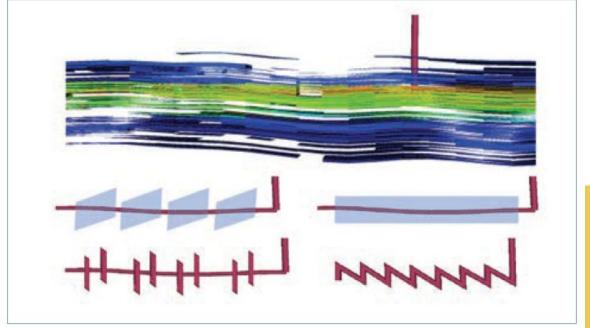
Сетка не изменяется


Возможность гибкого варьирования параметров трещины

-

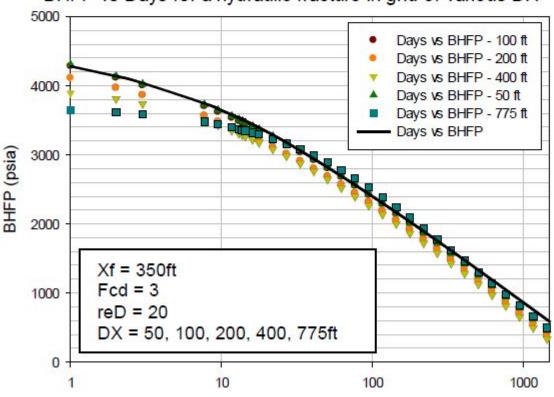
Требуется адаптация Метод применим для моделирования Заквытый объемных ГРП (полудлина трещины больше размера ячейки)

Используется плагин EasyFrac (Petrel), формирующий разделы COMPDAT и WPIMULT в секции SCHEDULE


ПСЕВДОГОРИЗОНТАЛЬНЫЕ СКВАЖИНЫ

+

Сетка не изменяется


Метод применим для моделирования большеобъёмных ГРП (полудлина трещины больше размера ячейки)

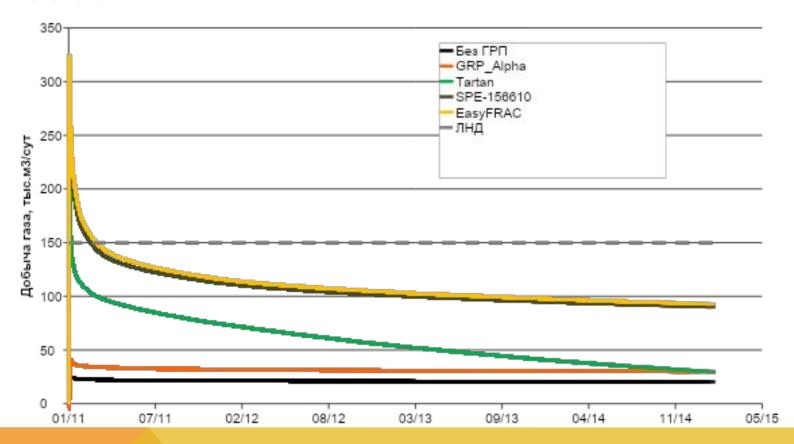
Псевдос

ЭФФЕКТ СЕТКИ

РАЗНОСТНО-АНАЛИТИЧЕСКИЙ ПОДХОД

+

Сетка не изменяется


Высокая точность

Метод основан на аналитическом решении уравнений фильтрации вблизи Не врещех вимкоя в оправнений фильтрации вблизи

Трещина моделируется как совокупность стоков, расположенных по одному в каждом расчётном блоке, через который она проходит.

Ключевое слово FRACTURE в PH-КИН (BOS)

ДИНАМИКА ДОБЫЧИ НА СКВАЖИНЕ С ГРП

ПРОБЛЕМА НЕОПРЕДЕЛЕННОСТИ ПАРАМЕТРОВ ТРЕЩИНЫ

	Xf, M	FC, мД*м	Fcd	Wf, mm
Отчёт ГРП	193	1271	11,1	7,41
ГДИС	163	2200	22,5*	-
Адаптированный EasyFrac	160	189,45*	1,97*	4,21

^{*-} расчётный параметр

СПАСИБО ЗА ВНИМАНИЕ!

ПАРАМЕТРЫ ТРЕЩИНЫ ГРП

$$F_{CD} = rac{k_f \, w}{k \, x_f}$$
 $rac{k_f}{k}$ - проницаемость пласта (мД) $rac{k}{k}$ - проницаемость пласта (мД) $rac{k}{k}$ - проницаемость пласта (мД) $rac{k}{k}$ - полудлина трещины (м)

Неограниченная проводимость (F_{cp}>10)

Ограниченная проводимость (F_{CD}<10)