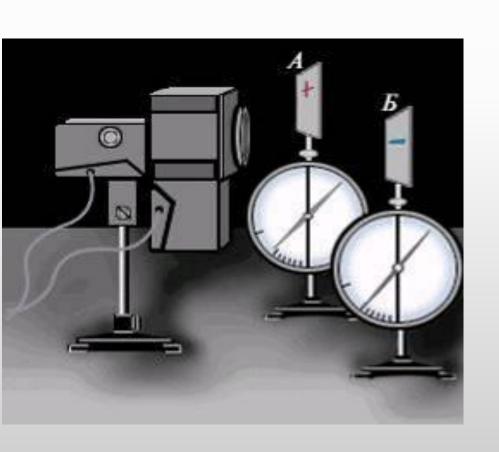

Фотоэфект

Планк Макс (1858—1947) -

великий немецкий физик-теоретик, основатель квантовой теории — современной теории движения, взаимодействия и взаимных превращений микроскопических частиц. В 1900 г. в работе по исследованию теплового излучения предположил, что энергия осциллятора (системы, совершающей гармонические колебания) принимает дискретные значения, пропорциональные частоте колебаний, энергия излучается отдельными порциями. Большой вклад внес в развитие термодинамики.

Гипотеза Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями

Квант – отдельная порция электромагнитного излучения

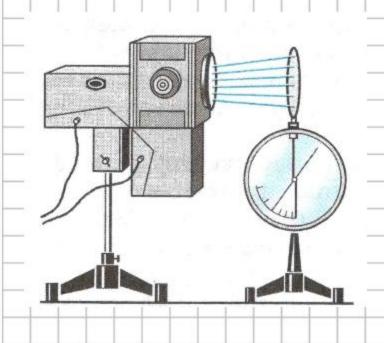

E = h v

энергия кванта

 $h = 6,63 \cdot 10^{-34}$ Дж · с

постоянная Планка

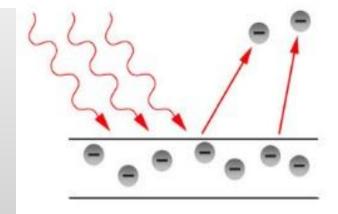
Опыт с цинковой пластиной

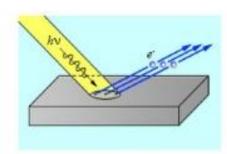


1887 год, Генрих Герц

- 1.Зарядим электрометр с цинковой пластинкой "+" и облучим УФЛ заряд не изменяется.
- 2. Зарядим электрометр "-" и облучаем электрометр разрядился.
- 3. Если на пути поставить стекло, то заряд не изменится.

Вывод: УФЛ выбивают из цинка электроны.

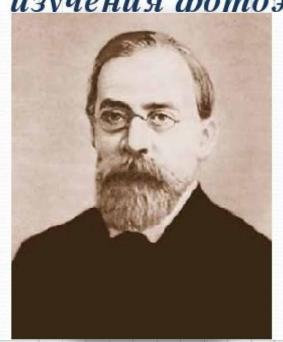

Фотоэффект - явление вырывания электронов из вещества под действием света



Опыт нельзя объяснить на основе волновой теории света: почему волны малой частоты не могут вырвать электроны даже при большой интенсивности освещения?

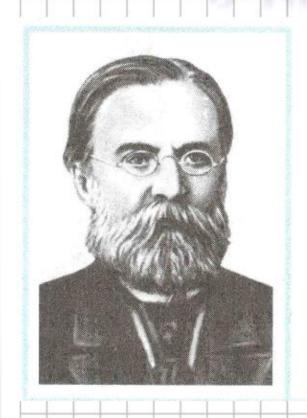
Вывод: с поверхности цинка электроны вырывает ультрафиолетовый свет, так как его частота больше, а значит и больше энергия каждого кванта

E = hv



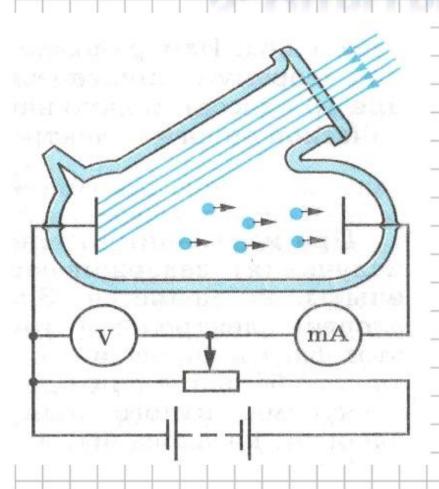
Явление фотоэффекта стало подтверждением квантовой гипотезы.

Этапы изучения фотоэффекта

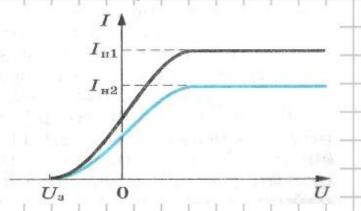


Генрих Герц - открытие явления.1887 год.

А.Г.Столетов - исследовал фотоэффект и установил его количественные закономерности. 1888 год.


А. Эйнштейн - обосновал квантовую природу фотоэффекта. 1905 год.

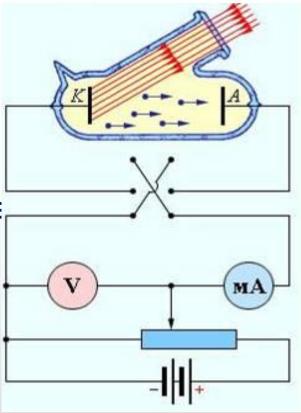
Столетов Александр Григорьевич (1839—1896) русский физик. Исследование фотоэффекта принесло ему мировую известность. Показал также возможность применения фотоэффекта на практике. В докторской диссертации «Исследования о функции намагничения мягкого железа» разработал метод исследования ферромагнетиков и установил вид кривой намагничения. Эта работа широко использовалась на практике при конструировании электрических машин. Был инициатором создания Физического института при Московском университете.


- 1. От чего зависит число вырванных светом электронов (фотоэлектронов)?
 - 2. Чем определяется скорость (кинетическая энергия) этих фотоэлектронов?

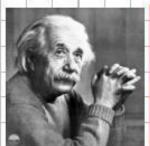
3. ОПЫТЫ СТОЛЕТОВА

Принцип работы установки

- 1. Без освещения светом катода тока в цепи нет, т.к. нет носителей заряда.
- 2. При освещении светом катода возникает фототок даже при отсутствии разности потенциалов.
- 3. При некотором напряжении возникает фототок *насыщения*.


4. При увеличении интенсивности излучения фототок насыщения увеличивается.

Законы фотоэффекта


•1) Количество вырванных электронов прямо пропорционально количеству падающего света.

•2) Скорость вырванных электронов зависит от частоты падающего света, чем частота больше, тем скорость больше.

4. ТЕОРИЯ ФОТОЭФФЕКТА

В 1905 году Эйнштейн объяснил фотоэффект на основе квантовой гипотезы Планка: излученная порция световой энергии $E=h_{\mathcal{V}}$ поглощается целиком.

$$hv = A_{\rm B} + \frac{mv^2}{2}$$

Формула Эйнштейна для фотоэффекта

Работа выхода – минимальная энергия, которую надо сообщить электрону,

Физический смысл уравнения Эйнштейна для фотоэффекта:

энергия кванта света расходуется на работу по вырыванию электрона из металла и на сообщение ему кинетической энергии

4. ТЕОРИЯ ФОТОЭФФЕКТА

$$hv = A_{\scriptscriptstyle \mathrm{B}} + rac{m v^2}{2}$$

Если $h\nu > A_{\rm B}$, то фотоэффект наблюдается

Если $hv < A_{\rm B}$, то фотоэффекта нет

Красная граница фотоэффекта: $u_{min} = rac{A_{
m B}}{h}$

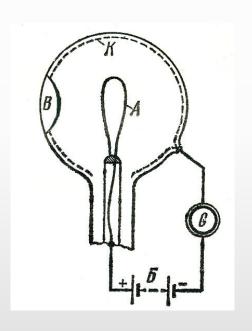
Красная граница фотоэффекта: $\lambda_{max} = \frac{hc}{A_{p}}$

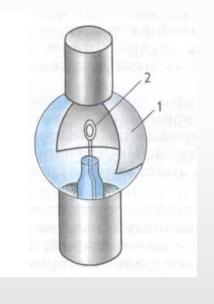
Красная граница фотоэффекта — предельная частота v_{min} , ниже которой фотоэффект не наблюдается.

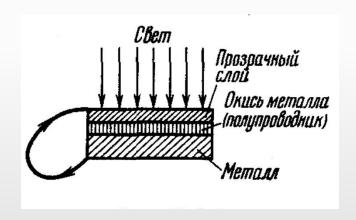
Третий закон фотоэффекта: для каждого вещества существует минимальная частота света (максимальная длина волны), ниже которой фотоэффект невозможен

4. ТЕОРИЯ ФОТОЭФФЕКТА

Красная граница фотоэффекта: $u_{min} = rac{A_{\mathrm{B}}}{h}$

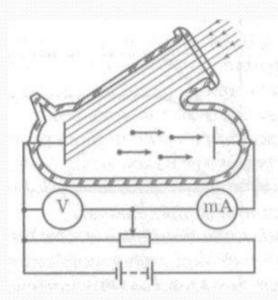

Работа выходов электронов


Вещество		эВ
Цезий	Cs	1,89
Калий	K	2,15
Барий	Ba	2,29
Литий	Li	2,39
Цинк	Zn	3,74
Титан	Ti	3,92
Серебро	Ag	4,30
Медь	Cu	4,46
Вольфрам	W	4,50
Золото	Au	4,58
Платина	Pt	5,30


$\frac{mv^2}{2} = eU_3$
$hv = A_{\rm B} + \frac{mv^2}{2}$
$hv = A_{\rm B} + eU_{\rm 3}$
$A_E = qU = eU_3$
Единица измерения работы:
эВ = 1,6 · 10 ^{−19} Дж

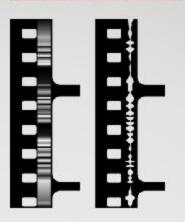
Вакуумный фотоэлемент Внешний фотоэффект Полупроводниковый фотоэлемент-

Внутренний фотоэффект



фотоэлемент - устройство, в котором световая энергия превращается в электрическую.

Фотоэлемент – устройство, в котором энергия света управляет энергией электрического тока или преобразуется в нее



Первый фотоэлемент, основанный на внешнем фотоэффекте, создал **Александр Григорьевич Столетов** в конце XIX века

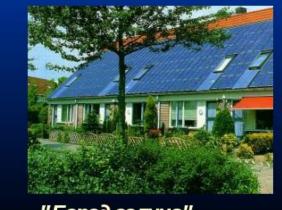
- Заговорило кино и стала возможной передача движущихся изображений.
- Контроль размеров изделий.
- Автоматическое включение и выключение маяков и уличного освещения.
- Автоматизация станков на заводах.
- «Видящие» автоматы в метро.
- Солнечные батареи (космические корабли)

- 1) С помощью фотоэффекта «заговорило» кино и стала возможной передача движущихся изображений (телевидение)
- 2) Создание станков, которые без всякого участия человека изготовляют детали по заданным чертежам
- 3) Основанные на фотоэффекте приборы контролируют размеры изделий лучше любого человека, вовремя включают и отключают маяки и уличное освещение и т.п.

фотоэлементы

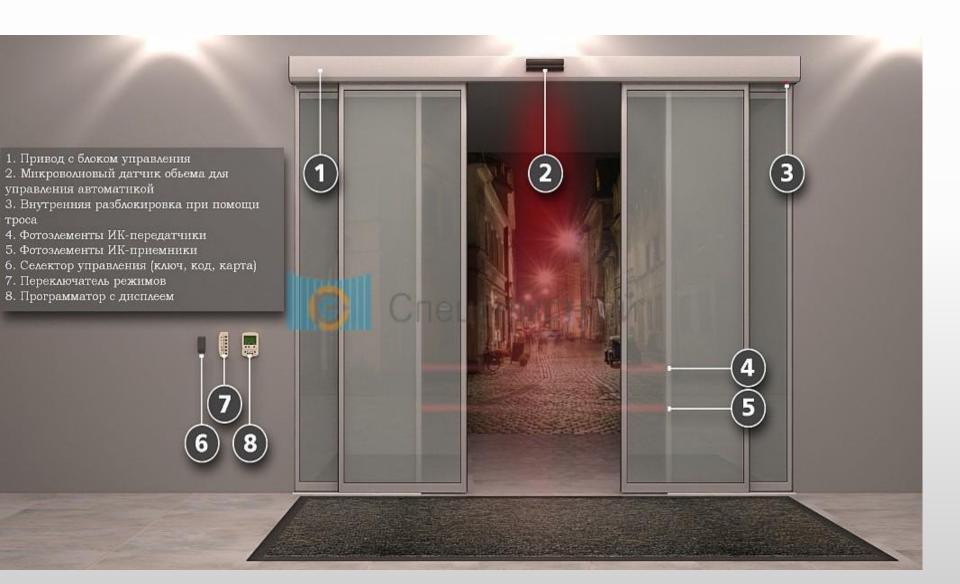
Турникеты в метро

Фотоэлементы зажигают маяки и уличные фонари с наступлением темноты



Станок оптический профилешлифовальный

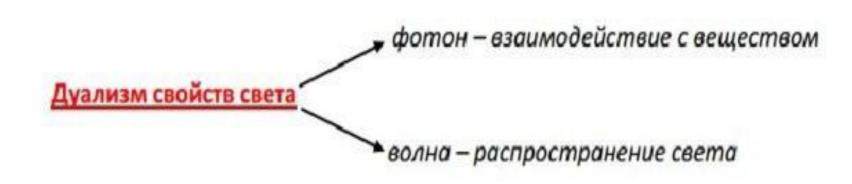
солнечный электромобиль



"<u>Город солнца"</u> (крыши покрыты солнечными панелями)

солнечные батареи для мобильного телефона, ноутбука

Фотон


- Фотон (пер. с греч. «свет») элементарная частица, квант электромагнитного излучения.
- Свойства света, обнаруживаемые при его излучении и поглощении, назвали **корпускулярными**.
- Основные свойства фотона
- является частицей электромагнитного поля,
- движется со скоростью света,
- существует только в движении,
- масса покоя равна нулю.

Фотоны

- •Квант, фотон, порция света
- •Фотон не имеет массы покоя, существует только в движении.
- •1.Энергия фотона E = hv
- •2.Импульс фотона р=тс
- •3. Масса фотона E = hv $E=mc^2$

Корпускулярно-волновой дуализм

- •Представление о том, что электромагнитные волны состоят из элементарных частиц фотонов, является примером корпускулярно-волнового дуализма: в одних экспериментах (интерференция, дифракция) свет проявляет себя как волна, в других (фотоэффект) как частица.
- •В 1923 выдвинута гипотеза об универсальности **корпускулярно-волнового дуализма**.

