Lesson11.

Tangent and Derivative.



The Tangent and Velocity Problems

In this section we see how limits arise when we attempt to find the tangent to a curve or
the velocity of an object.

B The Tangent Problem

The word tangent is derived from the Latin word fangens, which means “touching.” We
can think of a tangent to a curve as a line that touches the curve and follows the same
direction as the curve at the point of contact. How can this idea be made precise?

For a circle we could simply follow Euclid and say that a tangent is a line € that inter-
sects the circle once and only once, as in Figure 1(a). For more complicated curves this
definition is inadequate. Figure I(b) shows a line € that appears to be a tangent to the
curve C at point P, but it intersects C twice.

To be specific, let’s look at the problem of trying to find a tangent line € to the parab-
ola y = x? in the following example.
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EXAMPLE 1 Find an equation of the tangent line to the parabola y = x” at the
point P(1, 1).

SOLUTION We will be able to find an equation of the tangent line € as soon as we
know its slope m. The difficulty is that we know only one point, P, on €, whereas
we need two points to compute the slope. But observe that we can compute an
approximation to m by choosing a nearby point Q(x, x*) on the parabola (as in
Figure 2) and computing the slope mp, of the secant line PQ. (A secant line, from
the Latin word secans, meaning cutting, is a line that cuts [intersects] a curve more

than once.)

We choose x # 1 so that Q # P. Then

x?—1
x—1

Mpp =

For instance, for the point Q(1.5, 2.25) we have

225 -1 125
- - —25
T peey 08

FIGURE 2



The tables in the margin show the values of mpg for several values of x close to 1. The
closer Q is to P, the closer x is to 1 and, it appears from the tables, the closer mpg is
to 2. This suggests that the slope of the tangent line € should be m = 2.

X mpo X mpg
2 3 0 |

1.5 2.5 0.5 1.5
1.1 2:1 0.9 1.9
1.01 2.01 0.99 1.99
1.001 2.001 0.999 1.099

Assuming that the slope of the tangent line is indeed 2, we use the point-slope form
of the equation of a line [y — y, = m(x — x,), see Appendix B] to write the equation
of the tangent line through (1, 1) as

y—1=2(x—-1) or y=2x—1 ]



B The Velocity Problem

If you watch the speedometer of a car as you drive in city traffic, you see that the speed
doesn’t stay the same for very long; that is, the velocity of the car is not constant. We
assume from watching the speedometer that the car has a definite velocity at each
moment, but how is the “instantaneous” velocity defined?

Let’s consider the velocity problem: Find the instantaneous velocity of an object mov-
ing along a straight path at a specific time if the position of the object at any time is
known. In the next example, we investigate the velocity of a falling ball. Through exper-
iments carried out four centuries ago, Galileo discovered that the distance fallen by any
freely falling body is proportional to the square of the time it has been falling. (This
model for free fall neglects air resistance.) If the distance fallen after f seconds is denoted
by s(f) and measured in meters, then (at the earth’s surface) Galileo’s observation is
expressed by the equation

s(f) = 4.9¢*



EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of
the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after

5 seconds.

SOLUTION The difficulty in finding the instantaneous velocity at 5 seconds is that

we are dealing with a single instant of time (f = 5), so no time interval is involved.
However, we can approximate the desired quantity by computing the average velocity
over the brief time interval of a tenth of a second fromt = 5tot = 5.1:

change in position

average velocity = time elapsed
s(5.1) — s(5)

0.1
4.9(5.1) — 4.9(5)

- = — 49.49 m/s




The following table shows the results of similar calculations of the average velocity
over successively smaller time periods.

Time interval Average velocity (m/s)
S=r=3,.1 40.49
5=t=5.05 49.245
5=t=5.0l 49.049

5 =<t=5.001 49.0049

It appears that as we shorten the time period, the average velocity is becoming closer to
49 m/s. The instantaneous velocity when f = 5 is defined to be the limiting value of

these average velocities over shorter and shorter time periods that start at f = 5. Thus it
appears that the (instantaneous) velocity after 5 seconds is 49 m/s. #



You may have the feeling that the calculations used in solving this problem are very
similar to those used earlier in this section to find tangents. In fact, there is a close con-
nection between the tangent problem and the velocity problem. If we draw the graph of
the distance function of the ball (as in Figure 6) and we consider the points P(5, 4.9(5)*)
and Q(5 + h,4.9(5 + h)*) on the graph, then the slope of the secant line PQ is

49(5 + h)* — 4.9(5)°
5+h) -5

Mpp =

which is the same as the average velocity over the time interval [5, 5 + h]. Therefore the
velocity at time f = 5 (the limit of these average velocities as h approaches () must be
equal to the slope of the tangent line at P (the limit of the slopes of the secant lines).

SA

SA 5= 4.9¢*
s=4.9¢

slope of secant line slope of tangent line
= average velocity P = instantaneous velocity
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2.7

Derivatives and Rates of Change

Now that we have defined limits and have learned techniques for computing them, we
revisit the problems of finding tangent lines and velocities from Section 2.1. The special
type of limit that occurs in both of these problems is called a derivative and we will see
that it can be interpreted as a rate of change in any of the natural or social sciences or
engineering.

B Tangents

If a curve C has equation y = f(x) and we want to find the tangent line to C at the point
P(a, f(a)), then we consider (as we did in Section 2.1) a nearby point Q(x, f(x)), where
x # a, and compute the slope of the secant line PQ:

_ f® - f(
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Then we let Q approach P along the curve C by letting x approach a. If mp, approaches
a number m, then we define the tangent line € to be the line through P with slope m.
(This amounts to saying that the tangent line is the limiting position of the secant line PQ
as () approaches P. See Figure 1.)

1| Definition The tangent line to the curve y = f(x) at the point P(a, f(a)) is
the line through P with slope

e SO~ 1@

X—a Ak

m

provided that this limit exists.

In our first example we confirm the guess we made in Example 2.1.1.



Q(x, f(x))

FIGURE 1




EXAMPLE 1 Find an equation of the tangent line to the parabola y = x? at the
point P(1, 1).
SOLUTION Here we have @ = 1 and f(x) = x?, so the slope is

i TR T
x—] x—1 =1 x—1
. x=-Dx+1)

= |lim
x—1 x—1

=lmGx+1)=1+1=2

x—1

Using the point-slope form of the equation of a line, we find that an equation of the
tangent line at (1, 1) is

y—1=2x—-1) o y=2x—-1




We sometimes refer to the slope of the tangent line to a curve at a point as the slope
of the curve at the point. The idea is that if we zoom in far enough toward the point,
the curve looks almost like a straight line. Figure 2 illustrates this procedure for the
curve y = x” in Example 1. The more we zoom in, the more the parabola looks like a
line. In other words, the curve becomes almost indistinguishable from its tangent line.




There is another expression for the slope of a tangent line that is sometimes easier to
use. If h = x — a, then x = a + h and so the slope of the secant line PQ is

fla + h) — f(a)

Mmpg = h

(See Figure 3 where the case # > 0 is illustrated and Q is located to the right of P. If it
happened that # < 0, however, ) would be to the left of P.)

Notice that as x approaches a, h approaches 0 (because h = x — a) and so the expres-
sion for the slope of the tangent line in Definition 1 becomes

fla + h) fla)




Qla+ h, fla+ h))
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EXAMPLE 2 Find an equation of the tangent line to the hyperbola y = 3/x at the
point (3, 1).

SOLUTION Let f(x) = 3/x. Then, by Equation 2, the slope of the tangent at (3, 1) is

i [+ = fO)
h—0 h

MIGTh s SLR

Therefore an equation of the tangent at the point (3, 1) is
gl ghe 3}
which simplifies to X+ Jy— 6=

The hyperbola and its tangent are shown in Figure 4.




FIGURE 4




B Velocities

In Section 2.1 we investigated the motion of a ball dropped from the CN Tower and
defined its velocity to be the limiting value of average velocities over shorter and shorter
time periods.

In general, suppose an object moves along a straight line according to an equation of
motion s = f(f), where s is the displacement (directed distance) of the object from the
origin at time f. The function f that describes the motion is called the position function
of the object. In the time interval from f = a to t = a + h, the change in position is
fla + h) — f(a). (See Figure 5.)

position at position at
timet=a timeft=a+h
— - - >
0 ™ v = )
fla+ h)— fla)
[+ fla) .

fe— fla+ h) ————

FIGURE 5



The average velocity over this time interval is

displacement _ f (@ + h) — f(a)

average velocity = i P

which is the same as the slope of the secant line P( in Figure 6.

Q(a+h, fla+ h))

fla+ h)— fla)
Mpp="""J—"

= average velocity




Now suppose we compute the average velocities over shorter and shorter time inter-
vals [a, @ + h]. In other words, we let h approach 0. As in the example of the falling ball,
we define the velocity (or instantaneous velocity) v(a) at time t = a to be the limit of
these average velocities.

3 | Definition The instantaneous velocity of an object with position function
f(f)attime = ais

(@) = lim f(a + h) _f(a)

h—0 h

provided that this limit exists.

This means that the velocity at time f = a is equal to the slope of the tangent line at P
(compare Equation 2 and the expression in Definition 3).



EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the

CN Tower, 450 m above the ground.
(a) What is the velocity of the ball after 5 seconds?
(b) How fast is the ball traveling when it hits the ground?

SOLUTION Since two different velocities are requested, it’s efficient to start by finding
the velocity at a general time 7 = a. Using the equation of motion s = f(f) = 4.9¢%,
we have

+ h) — 49(a + h)* — 49a*
v(a) = lim fla ) —f() = lim (a ) 2
h—0 h h—0 h
. 49(a* + 2ah + h* — a?) . 49(2ah + h?)
= |lim = |im
h—0 h h—0 h
¢ -+
i AOAFR o w05 4 — 0%
h—0 h h—0

(a) The velocity after 5 seconds is v(5) = (9.8)(5) = 49 m/s.
(b) Since the observation deck is 450 m above the ground, the ball will hit the ground
at the time f when s(f) = 450, that is,

4.91* = 450

, 450 f450
- = 10 and {= 19 ~06s

This gives



B Derivatives

We have seen that the same type of limit arises in finding the slope of a tangent line
(Equation 2) or the velocity of an object (Definition 3). In fact, limits of the form

o fath) - f@

h—0 h

arise whenever we calculate a rate of change in any of the sciences or engineering, such
as a rate of reaction in chemistry or a marginal cost in economics. Since this type of limit
occurs so widely, it is given a special name and notation.

4 | Definition The derivative of a function f at a number a, denoted by f'(a),
1S

e i@ )= j{a)
f(“)_}'_',‘% h

if this limit exists.




If we write x = a + h, then we have h = x — a and h approaches 0 if and only if x
appro aches a. Therefore an equivalent way of stating the definition of the derivative, as

i L&) — f@

3_"0 X —a

fa) =




EXAMPLE 4 Use Definition 4 to find the derivative of the function f(x) = x* — 8x + 9
at the numbers (a) 2 and (b) a.

SOLUTION
(a) From Definition 4 we have

f'(2) =,,]i_l,!(l, f(2 + ’2 —f(2)

=lim(2+h)2—8(2+h)+9—(—3)
h—0 h

p LT A
g A F4h+h?—16 —8h+9+3
h
h*—4h . h(h—4)

= lim === lim (h ~ 4) = ~4




f'(a) = ’]II_I)% fla + ’2 — fla)

=lim[(a+h)2—8(a+h)';l-9]—[a2—80+9]

o a*+2ah+h*—8a -8 +9—a*+8—9
B bl o s i e oo i s S
h—0 h

=limQRa+h—8=2a—-38
h—0

h

As a check on our work in part (a), notice that if we let a = 2, then
f'(2)=2(2) —8=—4.




19-20 UseDeﬁnition4wﬁndf'(a)atﬂtegiven number a.
19. fx)=y4x+1, a=6

20. f(x)—Sx, a=—1

21-22 Use Equation 5 to find f'(a) at the given number a.

xt 1

21. f(x) = e a=3 22, f(x) =

V2x+72

23-26 Find f'(a).
23, f(x) =2x*—5x+3 24 f()=1t"—3t

|

2+1 20 f(x)

25. f(r) = T 4x




