
## Карбоновые кислоты

## Определение

• *Карбоновыми кислотами* называют органические вещества, молекулы которых содержат одну или несколько *карбоксильных* групп, соединенных с углеводородным радикалом



-COOH

## КЛАССИФИКАЦИЯ

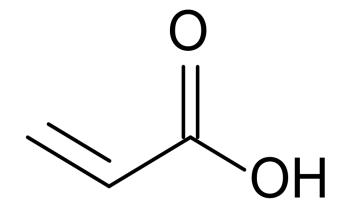
• 1)По числу карбоксильных групп карбоновые кислоты разделяют на монокарбоновые, или одноосновные(одна группа –СООН), дикарбоновые, или двухосновные(две группы

–COOH) и т.д.

$$H_3C-C < OH$$

• Этановая кислота

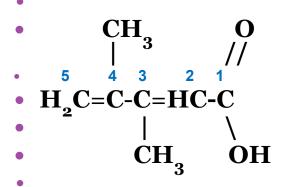
Малоновая кислота


• 2) В зависимости от строения углеводородного радикала, карбоновые кислоты могут быть алифатическими (например, СН<sub>3</sub>СООН) или ароматическими (бензойная кислота С6Н<sub>5</sub>СООН)

OH

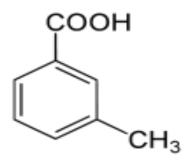
• Масляная кислота

Бензойная кислота


• 3) По строению радикала: предельными и непредельными



• Пропионовая кислота Акриловая кислота


#### НОМЕНКЛАТУРА

- 1) Главная цепь должна начинаться и нумероваться с карбоксильной группы
- 2)В префиксе указываются положения и названия заместителей
- 3)После корня, указывающего число атомов в цепи, идет суффикс, показывающий наличие или отсутствие кратных связей, их положение;
- 4)После этого добавляется «-овая кислота». Если карбоксильных групп несколько, то перед «-овая» ставится числительное (ди-, три-)



3,4-диметилпентадиен-2,4-овая кислота

# Названия ароматических кислот происходят от бензойной кислоты:



3-метилбензойная кислота

| , 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Название "                     |                                  |
|------------------------------------------|--------------------------------|----------------------------------|
| <b>Формула</b>                           | по заместительной номенклатуре | тривиальное                      |
| НСООН                                    | Метановая                      | Муравьиная                       |
| CH <sub>3</sub> COOH                     | Этановая                       | Уксусная                         |
| C <sub>2</sub> H <sub>5</sub> COOH       | Пропановая                     | Пропионовая                      |
| C <sub>3</sub> H <sub>7</sub> COOH       | Бутановая                      | Масляная                         |
| C₄H₀COOH                                 | Пентановая                     | Валериановая                     |
| C <sub>5</sub> H <sub>11</sub> COOH      | Гексановая                     | Капроновая                       |
| C <sub>6</sub> H <sub>13</sub> COOH      | Гептановая                     | Энантовая                        |
| C <sub>15</sub> H <sub>31</sub> COOH     | Пентадекановая                 | Пальмитиновая                    |
| C <sub>16</sub> H <sub>33</sub> COOH     | Гексадекановая                 | <ul> <li>Маргариновая</li> </ul> |
| C <sub>17</sub> H <sub>35</sub> COOH     | Гептадекановая                 | Стеариновая                      |

## Химические свойства

| Реакции                                  | Результат                                                                         | Пример                                                                                                                 |
|------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| С металлами                              | Выделяется водород, образуются соли                                               | $2CH_3COOH + Mg \rightarrow$<br>$(CH_3COO)_2Mg + H_2$                                                                  |
| С оксидами                               | Образуются соль и вода                                                            | $2CH_3COOH + ZnO \rightarrow$<br>$(CH_3COO)_2Zn + H_2O$                                                                |
| С основаниями<br>(нейтрализация)         | Образуются соль и вода                                                            | $CH_3COOH + NaOH \rightarrow$<br>$CH_3COONa + H_2O$                                                                    |
| С карбонатами                            | Выделяются углекислый газ и вода                                                  | $2CH_3COOH + CaCO_3 \rightarrow$ $(CH_3COO)_2Ca + H_2O +$ $CO_2$                                                       |
| С солями слабых<br>кислот                | Образуется неорганическая кислота                                                 | 2CH <sub>3</sub> COOH + Na <sub>2</sub> SiO <sub>3</sub> →<br>2CH <sub>3</sub> COONa + H <sub>2</sub> SiO <sub>3</sub> |
| С аммиаком или<br>гидроксидом<br>аммония | Образуется ацетат аммония. При<br>взаимодействии с гидроксидом<br>выделяется вода | $CH_3COOH + NH_3 \rightarrow$ $CH_3COONH_4$ $CH_3COOH + NH_4OH \rightarrow$ $CH_3COONH_4 + H_2O$                       |
| Со спиртами<br>(этерификация)            | Образуются сложные эфиры                                                          | $CH_3COOH + C_2H_5OH \rightarrow$ $CH_3COOC_2H_5 + H_2O$                                                               |
| Галогенирование                          | Образуется соль                                                                   | $CH_3COOH + Br_2 \rightarrow$<br>$CH_2BrCOOH$                                                                          |

- 1) Предельные кислоты вступают в реакции замещения (например, с Cl<sub>2</sub>). Причем, в таких реакциях замещается водород у <u>ближайшего к карбоксильной группе</u> атома углерода.
- 2) Непредельные кислоты вступают в реакции присоединения.

### Физические свойства

• Низшие кислоты(С1-С4) — бесцветные, резко пахнущие жидкости, хорошо растворимые в воде; начиная с пентановой (валериановой) кислоты — маслянистые жидкости; высшие кислоты(С10-...) - твердые вещества без вкуса и запаха, нерастворимые в воде.

- **Стеариновая кислота** имеет состав C<sub>17</sub>H<sub>35</sub>COOH Это белое, жирное на ощупь вещество. Запаха не имеет. В воде не растворяется. Входит в состав жиров. При нагревании реагирует с щелочами.
- Является ключевым компонентом в производстве мыла.