Понятие логарифма

$$2^{x} = 4$$

$$x = 2$$

$$2^{x} = 8$$

$$x = 3$$

$$2^{x} = 6$$

$$\log_{2}$$

$$x = \log_{2} 6$$

$$2^{x} = b, b > 0$$

$$x = \log_{2} b$$

$$a^x = b, b > 0, a > 0, a \neq 1$$

 $x = \log_a b$

Логарифмом b>0 по основанию

a > 0, $a \ne 1$ называют показатель степени, в которую нужно возвести число a, чтобы получить число b.

$$\log_2 8 = 3$$
, так как = $\log_3 \frac{1}{27} = -3$, так как = $\log_3 \frac{1}{27} = -2$, так как $\left(\frac{1}{5}\right)^{-2} = 25$

Логарифмом b>0 по основанию a>0,

 $a \neq 1$ называют показатель степени, в которую нужно возвести число a, чтобы получить число b.

 $2^{x} = 6$ $x = \log_{2} 6$ – иррациональное число $\log_{2} 6 = \frac{m}{h} \Leftrightarrow =$

Логарифмом b>0 по основанию a>0,

 $a \neq 1$ называют показатель степени, в которую нужно возвести число a, чтобы получить число b.

$$a^{\log_a b} = b$$

основное логарифмическо е тождество

$$2^{\log_2 16} = 16$$
 $2^{\log_2 8} = 8$
 $\log_2 16 = 4$ $\log_2 8 = 3$
 $2^4 = 16$ $2^3 = 8$

$$2^{\log_2 7} = 7$$

$\log_a b = c \Leftrightarrow a^c = b$

Возведение в степень	Логарифмировани
$6^2 = 36$	$\log_6 36 = 2$
$5^5 = 3125$	$\log_5 3125 = 5$
$4^7 = 16384$	$\log_4 16384 = 7$
$3^8 = 6561$	$\log_3 6561 = 8$

Пример:

Вычислить: $\log_{\frac{1}{2}} 81$.

Решение:

$$\log_{\frac{1}{3}} 81 = x$$

$$\left(\frac{1}{3}\right)^x = 81$$

$$81 = 3^4 = \left(\frac{1}{3}\right)^{-4}$$

$$x = -4 \Leftrightarrow \log_{\frac{1}{3}} 81 = -4$$

 $\bigcap_{\mathbf{T} \in \Delta \mathbf{T}^*} = A$

Пример:

Вычислить: $\log_{10} \frac{1}{\sqrt[3]{10}}$.

Решение:

$$lg \frac{1}{\sqrt[3]{10}}$$

$$\frac{1}{\sqrt[3]{10}} = \frac{1}{10^{\frac{1}{3}}} = 10^{-\frac{1}{3}}$$

$$\frac{\frac{1}{\sqrt[3]{10}} = \frac{1}{10^{\frac{1}{3}}} = 10^{-\frac{1}{3}}$$

$$\lg \frac{1}{\sqrt[3]{10}} = \lg 10^{-\frac{1}{3}} = -\frac{1}{3}$$

Ответ:
$$-\frac{1}{3}$$
.

$$log_{10} a = lg a
log_a a^c = c
log_a a = ln a$$

Пример:

 $a^{\log_a b} = b$

Вычислить: $5^{2 \log_5 3}$.

Решение:

$$5^{2 \log_5 3} = (5^2)^{\log_5 3} = (5^{\log_5 3})^2 = 3^2 = 9$$

Ответ: 9.