Выпускная квалификационная работа

МАТЕМАТИЧЕСКОЕ И ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДОЛГОСРОЧНОГО ПРОГНОЗИРОВАНИЯ НЕБЛАГОПРИЯТНЫХ СОСУДИСТЫХ СОБЫТИЙ ПОСЛЕ ПЕРЕНЕСЕННОЙ КАРОТИДНОЙ ЭНДАРТЕРЭКТОМИИ

- Выполнил:студент группы МО-412 Гатиятуллин Л.Р.
- Руководитель_ к.т.н. Лакман И.А.

Актуальность работы

Проблема, существующая на рынке:

Одной из причин высокой сосудистой смертности является острое нарушение мозгового кровообращения (инсульт).

Предлагаемое решение, новизна:

Одним из способов лечения постинсультных больных в краткосрочном периоде является операция каротидной эндартерэктомии

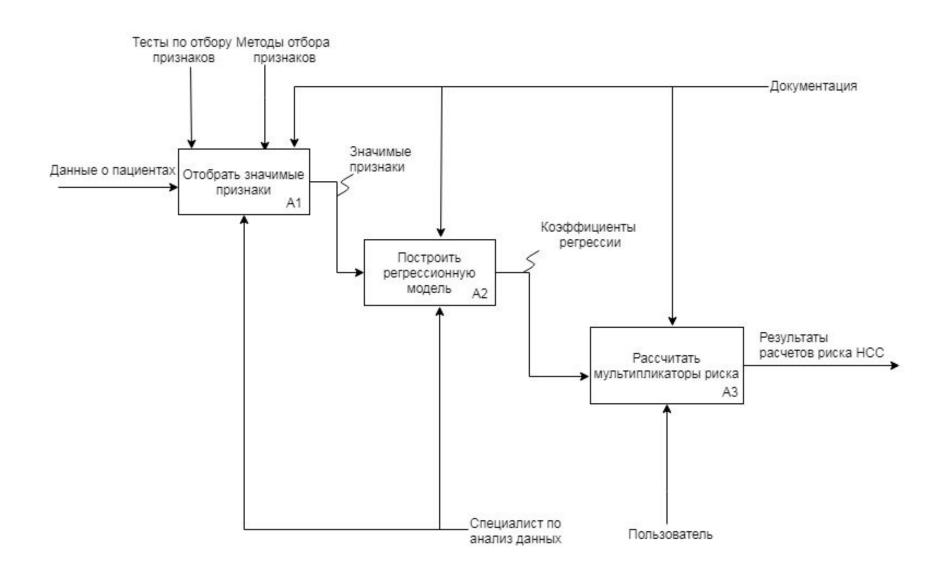
В каждом медицинском учреждении, где проводится операция каротидной эндартерэктомии должна быть возможность прогноза развития риска неблагоприятных сосудистых событий(смерти), и одно из решений является разработка и внедрение соответствующего программного обеспечения.

Цель и задачи дипломной работы

Повысить эффективность назначения профилактических мероприятий по наступлению неблагоприятных сосудистых событий для больных после перенесённой каротидной эндартерэктомии за счёт разработки математического и программного обеспечения.

- 1. Собрать соответствующую выборку больных, которые перенесли операцию каротидной эндартерэктомии.
- 2. Обработать данные и провести соответствующие статистические тесты анализа выживаемости, выявить различия функций выживаемости для различных категорий постинсультных больных; оценить различия в функциях выживаемости при группировке по признакам.
- 3. На основании отобранных значимых признаков построить модели выживаемости для различных периодов, оценить качество полученной модели.
- 4. Создать реестр больных, перенесших каротидную эндартерэктомию в виде реляционной базы данных.
- 5. Разработать программное обеспечение с использованием моделей выживаемости, подключенное к базе данных.

Постановка задачи


Содержательная постановка задачи:

На основе данных о пациенте рассчитать мультипликаторы рисков смертности и неблагоприятных сосудистых событий.

Формальная постановка задачи:

Декомпозиция задачи

Отбор значимых признаков(1) Метод Каплана Майера

Дано:

 $\boldsymbol{R_i}$ - число объектов, доживающих до момента времени t .

 ${f d}_i$ - число объектов, для которых произошёл исход(смерть)в момент времени t .

Найти:

Оценку функции выживания $\hat{\mathbf{S}}(\mathbf{t})$

Решение:

$$\widehat{S}(t) = \prod_{i=0}^{T} \frac{R_i - d_i}{R_i}$$

Данный подход позволяет графически проанализировать, есть ли различие в функциях выживаемости для разных групп объектов, сгруппированных по определенному признаку

Отбор значимых признаков(2) Критерии Гехана-Вилкоксона

газличие выживаемости между двумя группами $\mathbf{s}_1(\mathbf{t}) = \mathbf{s}_2(\mathbf{t})$

Решение:

Сначала каждый объект из 1-ой группы сравнивается с каждым объектом из 2-ой группы, результат сравнения равен:

$$y_{ij} \begin{cases} 1, & t_i > t_j, \\ -1, & t_i < t_j, \\ 0. & \end{cases}$$

Результаты сравнения для каждого объекта суммируются: $\mathbf{U} = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathbf{y}_{ij}$

Вычисляется оценка дисперсии $V=\sqrt{\frac{n_1n_2}{(n_1+n_2)(n_1+n_2-1)}\sum_{i=1}^{n_1}\left(\sum_{j=1}^{n_2}y_{ij}\right)^2}$

и статистика критерия : $\mathbf{Z}_{\mathbf{V}} = \frac{\mathbf{U}}{\mathbf{v}}$.

Если $\mathbf{Z}_{\mathbf{V}} > \Phi_{\alpha}$, где Φ_{α} есть α -квантиль нормального распределения, то выживаемость в двух группах одинакова

Регрессионная модель Кокса

Дано:

 ${\bf z_1}, {\bf z_2}, \dots {\bf z_m}$ - значение отобранных признаков.

Найти:

 ${\bf b_1}, {\bf b_2}, ... {\bf b_m}$ - коэффициенты уравнения регрессии.

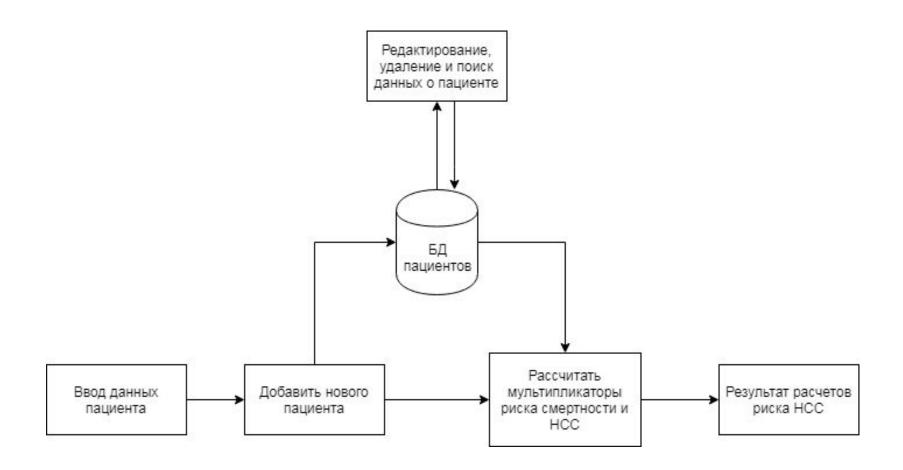
Решение:

$$h[(t),(z_1,z_2,...,z_m)] = h_0(t) * exp(b_1 * z_1 + \cdots + b_m * z_m)$$

Общая задача состоит в том, чтобы по наблюдениям за временами жизни оценить \mathbf{h}_0 и неизвестные коэффициенты \mathbf{b}_1 ... \mathbf{b}_m .

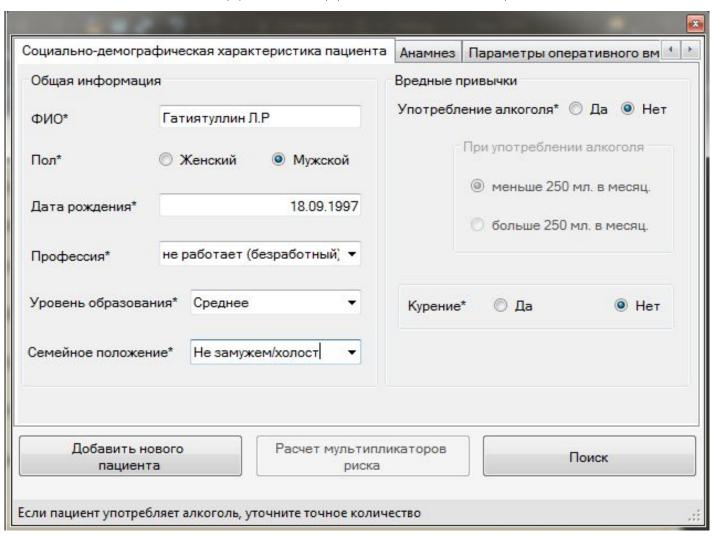
Модель можно линеаризовать последнюю модель, поделив обе части соотношения на $\mathbf{h}_0(\mathbf{t})$ и взяв натуральный логарифм от обеих частей:

$$log\left\{\frac{h[(t),(z_{..})]}{h_0(t)}\right\} = b_1 * z_1 + \dots + b_m * z_m$$

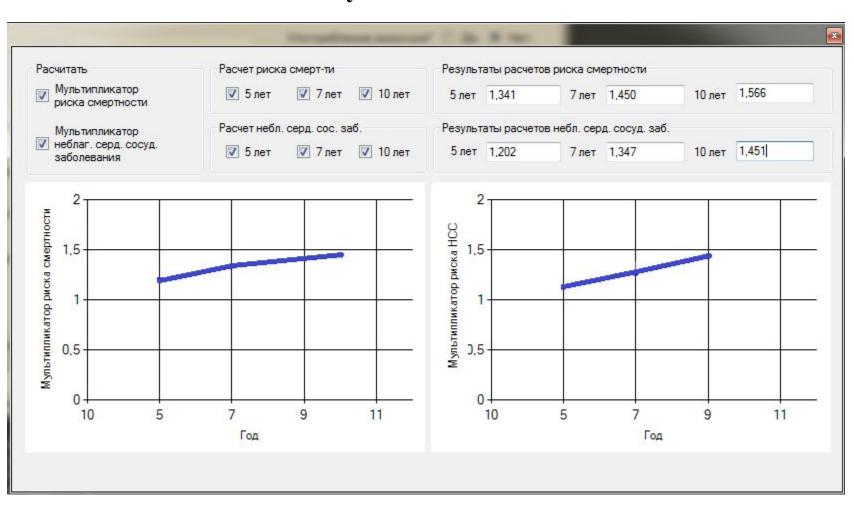

Результаты модели

- Расчет риска смертности для:
- 5 лет: **1,106** * (Возраст на момент операции) + **2,963** * (Курение) + **0,932** * (Индекс Бартела) + **1,176** * (Шкала депрессии) + **1,915** * (Индекс атерогенности)
- 7 лет: 1, 137 * (Возраст на момент операции) + 2,419 * (Курение) + 1,406 * (Регулярность приема препаратов) + 0,935 * (Индекс Бартела) + 1,766 * (Индекс атерогенности)
- 10 лет: **1**, **182** * (Возраст на момент операции) + **2**, **440** * (Курение) + **1**, **426** * (Регулярность приема препаратов) + **0**, **903** * (Индекс Бартела) + **1**, **517** * (ММЅЕ) + **1**, **991** * (Индекс атерогенности)

Расчет риска неблагоприятных сосудистых событий:


- 5 лет: **1,145** * (Возраст на момент операции) + **4,762** * (Пол) + **3,278** * (Прием аспирина) + **0,905** * (Индекс Бартела) + **2,159** * (Индекс атерогенности)
- 7 лет: 1,247 * (Возраст на момент операции) + 3,952 * (Пол) + 2,892 * (Прием аспирина) + 0,910 * (Индекс Бартела) + 2,183 * (Индекс атерогенности)
- 10 лет: **1**, **246** * (Возраст на момент операции) + **3**, **484** * (Пол) + **2**, **837** * (Прием аспирина) + **0**, **897** * (Индекс Бартела) + **2**, **264** * (Индекс атерогенности)

Общая архитектура приложения.


Интерфейс и пример работы ПО (1)

Заполнение данных для нового пациента.

Интерфейс и пример работы ПО (2)

Расчет мультипликаторов риска смертности и неблагоприятных сосудистых событий

Интеллектуальная собственность

Программа для ЭВМ зарегистрирована в Роспатенте

(Свидетельство о государственной регистрации программы для ЭВМ 2019612219 06.03.2019

РОССИЙСКАЯ ФЕДЕРАЦИЯ

RU 2019613815

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

ГОСУДАРСТВЕННАЯ РЕГИСТРАЦИЯ ПРОГРАММЫ ДЛЯ ЭВМ

Номер регистрации (свидетельства): 2019613815

Дата регистрации: 22.03.2019

Номер и дата поступления заявки: 2019612219 06.03.2019

Дата публикации и номер бюллетеня: 22.03.2019 Бюл. № 4

Контактные реквизиты: +79279655655, Lackmania@mail.ru ARTON(LI)

Бикбулатова Лариса Флюровна (RU), Лакман Ирина Александровна (RU), Ахмадеева Лейла Ринатовна (RU), Гатиятуллин Ленар Ришатович (RU)

Правообладатель(и):

Бикбулатова Лариса Флюровна (RU), Лакман Ирина Александровна (RU), Ахмадеева Лейла Ринатовна (RU), Гатиятуллин Ленар Ришатович (RU)

Название программы для ЭВМ:

ПРОГРАММА ДОЛГОСРОЧНОГО ПРОГНОЗА ВЫЖИВАЕМОСТИ ПОСЛЕ ПЕРЕНЕСЕННОЙ КАРОТИДНОЙ ЭНДАРТЕРЭКТОМИИ

Реферат

Программа предназначена для расчёта прогнозной оценки выживаемости (в период 5 и 7 лет) после перенесенной каротидной эндартерэктомии и может применяться для повышения эффективности реабилитационных мер за счёт прогнозирования долгосрочного исхода хирургического вмещательства. Программа обеспечивает выполнение следующих функций: хранение данных; возможность добавления, редактирования и удаления данных; возможность быстрого поиска пациентов в базе; возможность расчёта оценки расчёта прогнозной оценки выживаемости (в период 5, 7 и 10 лет) после перенесенной каротидной эндартерэктомии для конкретного пациента.

 Язык программирования:
 С#.net

 Объем программы для ЭВМ:
 153 Мб

Результаты и выводы

- 1. Были собраны данные (предоставлены 6 больницей) о пациентах и собрана соответствующая выборка больных, перенесшие каротидную эндартерэктомию.
- 2. Обработаны данные и проведены тесты анализа выживаемости, выявлены различия функции выживаемости для различных групп. Были отобраны значимые факторы, влияющие на риск НСС.
- 3. На основе отобранных значимых признаков была построена модель выживаемости.
- 4. Разработано программное обеспечение с использованием модели выживаемости, подключенная к БД.

Спасибо за внимание