ДРОБНЫЙ И СИСТЕМАТИЧЕСКИЙ ХОД АНАЛИЗА ИОНОВ

- **Дробный метод анализа** – обнаружение ионов в отдельных порциях сложной смеси при условии устранения влияния посторонних мешающих ионов.

$$2K^+ + Na^+ + [Co(NO_2)_6]^{3-} \rightarrow K_2Na[Co(NO_2)_6] \downarrow$$
. гексанитрокобальтат (III) дикалия-натрия — желтый

$${
m Co^{2^+} + 4SCN^-}
ightarrow [{
m Co(SCN)}_4]^{2^-}.$$
 тетратиоцианатокобальтат (II)-анион – синий

- Систематический ход анализа — определенная последовательность реакций обнаружения и отделения аналитических групп ионов. Группы ионов подразделяют на подгруппы, а затем в пределах подгруппы разделяют индивидуальные ионы и обнаруживают их при помощи характерных реакций.

КЛАССИФИКАЦИЯ КАТИОНОВ ПО ГРУППАМ

- * Аналитическая классификация катионов базируется на химических свойствах катионов и связана с их электронным строением и положением элементов в периодической системе Д.И.Менделеева
- * В основу распределения катионов по группам положены отношение катионов к действию аналитических реагентов и свойства продуктов реакций.

Типы классификации катионов по группам:

- сероводородный (сульфидный)
-аммиачно-фосфатный
-кислотно-основной
-карбонатный
-бифталатный
-тиоацетамидный

СЕРОВОДОРОДНАЯ КЛАССИФИКАЦИЯ КАТИОНОВ ПО ГРУППАМ

Метод анализа, в котором в качестве группового реагента применяют раствор H₂S, называют *сероводородным методом обнаружения катионов и* анализа их смесей.

Основан на образовании малорастворимых сульфидов, карбонатов и хлоридов

№ группы	катионы	групповой реагент	
1	Li ⁺ ,Na ⁺ , K ⁺ , NH ₄ ⁺ , Mg ²⁺		
2	Ca ²⁺ , Sr ²⁺ , Ba ²⁺	$(NH_4)_2CO_3$ $(NH_3 \cdot H_2O, NH_4Cl, pH = 9.2)$	
	Al ³⁺ , Cr ³⁺ , Zn ²⁺ , Mn ²⁺ , Fe ²⁺ , Fe ³⁺ , Co ²⁺ , Ni ²⁺	(NH4)2S $(NH3·H2O,NH4Cl, pH = 7 ÷ 9)$	
4	$Cu^{2+}, Cd^{2+}, Hg^{2+}, Bi^{3+}$	$H_2S (pH = 0.5),$	
	Sn^{2+} , $Sn(IV)$, Sb^{3+} , $Sb(V)$, $As(III)$, $As(V)$	HC1	
5	$Ag^{+}, Hg_{2}^{2+}, Pb^{2+}$	HCl.	

СЕРОВОДОРОДНАЯ КЛАССИФИКАЦИЯ КАТИОНОВ ПО ГРУППАМ

Преимущества и недостатки метода

- применяется более 100 лет
- теоретические основы метода хорошо разработаны
- -нельзя разделить катионы Ca^{2+} , Zn^{2+} , Sn^{2+} , Pb^{2+}
- -сульфиды окисляются до сульфатов (Ca^{2+} , Sr^{2+} , Ba^{2+})
- -токсичность растворов сероводорода

АММИАЧНО-ФОСФАТНЫЙ МЕТОД АНАЛИЗА КАТИОНОВ

Метод основан на использовании различной растворимости фосфатов в воде, сильных и слабых кислотах, щелочах и водном растворе аммиака.

```
Растворяются в H<sub>2</sub>O : Na<sub>3</sub>PO<sub>4</sub>, K<sub>3</sub>PO<sub>4</sub>, (NH<sub>4</sub>)<sub>3</sub>PO<sub>4</sub>
в NH<sub>3</sub>·H<sub>2</sub>O: Ag<sub>3</sub>PO<sub>4</sub>, Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Co<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Cd<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Hg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>
ва<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Sr<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, MgNH<sub>4</sub>PO<sub>4</sub>, MnNH<sub>4</sub>PO<sub>4</sub>, FePO<sub>4</sub>, Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, CrPO<sub>4</sub>, AlPO<sub>4</sub>, BiPO<sub>4</sub>, Sn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, (SbO)<sub>3</sub>PO<sub>4</sub>, Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Hg<sub>3</sub>PO<sub>4</sub>
в CH<sub>3</sub>COOH: AlPO<sub>4</sub>, FePO<sub>4</sub>, BiPO<sub>4</sub>, CrPO<sub>4</sub>
```

Преимущества и недостатки метода

- нетоксичен
- -высокая точность и экспрессность проведения анализа
- -присутствие фосфат-ионов в анализируемом растворе не мешает проведению анализа

АММИАЧНО-ФОСФАТНЫЙ МЕТОД АНАЛИЗА КАТИОНОВ

№ группы	катионы	групповой реагент	растворитель	
1	Na ⁺ , K ⁺ , NH ₄ ⁺		H_2O	
	Li ⁺ , Fe ²⁺ , Fe ³⁺ , Al ³⁺ , Cr ³⁺ , Bi ³⁺	(NH ₄) ₂ HPO ₄ ,	CH ₃ COOH	
2	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Mg ²⁺ , Mn ²⁺	NH ₄ OH		
3	Cu ²⁺ , Cd ²⁺ , Hg ²⁺ , Zn ²⁺ , Co ²⁺ , Ni ²⁺	(NH ₄) ₂ HPO ₄ ,	NH ₃ ·H ₂ O	
4	Sn ²⁺ , Sn(IV), Sb ³⁺ , Sb(V), As(III), As(V)	HNO ₃		
5	Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺	HC1		

КИСЛОТНО-ОСНОВНОЙ МЕТОД КЛАССИФИКАЦИИ КАТИОНОВ

Кислотно-основной метод анализа основан на делении катионов на шесть аналитических групп в зависимости от их отношения к кислотам и растворам оснований.

№ группы	катионы	групповой реагент	
1	Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺	HCl	
2	Ca ²⁺ , Sr ²⁺ , Ba ²⁺	H_2SO_4 (C_2H_5OH)	
3	Al ³⁺ , Cr ³⁺ , Zn ²⁺ , Sn ²⁺ , Sn(IV), As(III), As(V)	NaOH, H ₂ O ₂	
4	Mg ²⁺ , Mn ²⁺ , Fe ²⁺ , Sb ³⁺ , Sb(V), Fe ³⁺ , Bi ³⁺	NH ₃ ·H ₂ O, NaOH	
5	Cu ²⁺ , Cd ²⁺ , Hg ²⁺ , Co ²⁺ , Ni ²⁺	NH ₃ ·H ₂ O	
6	Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺	60 700 00 00 00 70	

КИСЛОТНО-ОСНОВНОЙ МЕТОД КЛАССИФИКАЦИИ КАТИОНОВ

Преимущества и недостатки метода

- нетоксичен, прост и не требует дорогостоящих реактивов
- -неприменим, если в анализируемом растворе содержатся фосфат-ионы
- -трудоемок перевод сульфатов кальция, стронция и бария в соответствующие карбонаты
- -нечеткость разделения катионов по группам (растворимость PbCl₂ и CaSO₄ [H₂O], Cu(OH)₂ [NaOH], Mg(OH)₂ [NH₃·H₂O, NH₄Cl])

1 Классификация, основанная на окислительно-восстановительных свойствах анионов

	анионы	групповой реагент
анионы-	BrO ₃ -, AsO ₄ -, NO ₃ -, NO ₂ -,	KI
окислители	MnO_4	
анионы-	S ² -, SO ₃ ² -, S ₂ O ₃ ² -, AsO ₃ ³ -, NO ₂ -	I_{2}
восстановители	C ₂ O ₄ ²⁻ , Cl ⁻ , Br ⁻ , I ⁻ , CN ⁻ , SCN ⁻	$\overline{\text{KMnO}_{4}}$
индифферентные	SO ₄ ²⁻ , CO ₃ ²⁻ , PO ₄ ³⁻ , CH ₃ COO ⁻ ,	
анионы	$B_{A}O_{7}^{2}$	

2 Классификация анионов по групповым реагентам, основанная на образовании малорастворимых солей бария и серебра

Первая аналитическая группа

Их групповым реагентом является хлорид бария в нейтральном или слабощелочном растворе. Эти анионы образуют с катионами Ba^{2+} малорастворимые в воде соли, которые (за исключением BaSO_4) растворимы в разбавленных растворах минеральных кислот. Поэтому анионы первой аналитической группы (кроме SO_4^{2-}) не осаждаются ионами Ba^{2+} из кислых растворов.

Йодат- и бромат-ионы образуют с катионами бария малорастворимые соединения, поэтому выпадают в осадок вместе с анионами первой аналитической группы.

0.000				
Анионы:	сульфат	$-SO_4^{2-}$,	арсенат (III)	$-AsO_3^{3-}$
6.26	сульфит	$-SO_3^{-2}$,	арсенат (V)	$-AsO_{4}^{3}$, -
	тиосульфат	$-S_{2}O_{3}^{2}$,	оксалат	$C_{2}O_{4}^{2}$,
Cara and	карбонат	$-CO_{3}^{2}$,	силикат	$-\overline{\mathrm{SiO}_{3}^{2}}$,
	фосфат	$-PO_{4}^{3}$,	метаборат	$-BO_{2}^{3}$,
	хромат	$-\operatorname{CrO}_{4}^{2}$,	фторид	– F⁻. Ž

Вторая аналитическая группа

Их групповым реагентом является нитрат серебра в присутствии азотной кислоты, $c(\text{HNO}_3) = 2$ моль/дм³. Галогениды и сульфид серебра (AgCl, AgBr, AgI, Ag₂S) нерастворимы в разбавленных растворах кислот.

Соли серебра, образуемые анионами первой аналитической группы (арсенат (III), арсенат (V), метаборат, карбонат, оксалат, хлорат, хромат, фосфат, сульфит, сульфат серебра), растворимы в растворах кислот.

Анионы:	хлорид	$-C1^{-}$,	бромат	$-\operatorname{BrO}_{3}^{-}$
	бромид	–Br⁻,	сульфид	$-S^{2-}$,
	йодид	- I ,	тиоцианат	- SCN ⁻ .
0000000	йодат	$-IO_3$,		

Третья аналитическая группа

Для анионов этой группы группового реагента нет

Привести схему систематического хода + разобрать другие классификации рассмотреть открытие анионов дробным и систематическим методом открытие катионов дробным методом

```
Анионы: ацетат -CH_3COO^-, перманганат -MnO_4^-, нитрат -NO_3^-, хлорат -ClO_3^-.
```