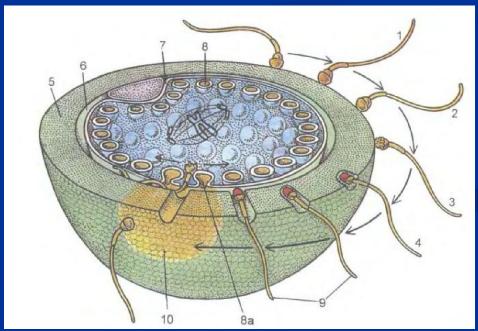
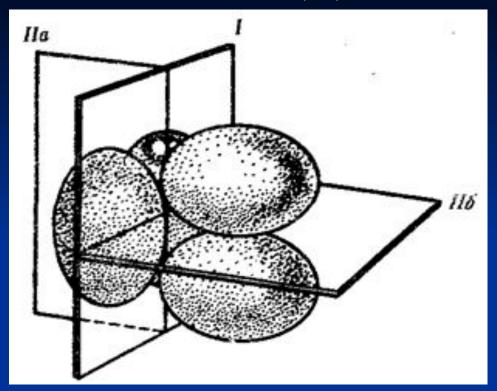


Эмбриогенез человека

Делят на три периода:

- •Начальный (1-ая неделя)
- •Зародышевый (2-8 неделя)
- •Плодный (с 9 недели до рождения)


ПОСЛЕДОВАТЕЛЬНОСТЬ И ЛОКАЛИЗАЦИЯ СОБЫТИЙ РАННЕГО РАЗВИТИЯ


Оплодотворение

Это слияние мужской и женской половых клеток, в результате чего восстанавливается диплоидный набор хромосом, и возникает зигота (одноклеточный зародыш). Состоит из трех фаз:

- •Дистантное взаимодействие (капацитация)
- •Контактное взаимодействие (вращение яйцеклетки сперматозоидами 12ч.)
- •Кортикальная реакция

ДРОБЛЕНИЕ

Дробление медленное, полное, неравномерное, асинхронное (вращательное-чередующееся). Первое дробление завершается через 30 часов. В результате дробления образуется зародыш — *бластоииста*.

Типы дробления

Особенности ранних этапов эмбриогенеза

Тип яйце- клетки	изолецитальная	умеренно телолецитальная	резко телолецитальная	центролецитальная	
Тип дробления	равномерное	н о е неравномерное	не п с	поверхностное	
Тип бластулы	целобластула	амфибластула	дискобластула	перибластула	
Преобла- дающий способ гаструля- ции	инвагинация	киподине	деляминация		
Предста- вители	ланцетник, морской еж	амфибии	рыбы, птицы, рептилии	насекомые	

Типы дробления.

Полное неравномерное

дробление.

Название типа

дробления.

Полное равномерное

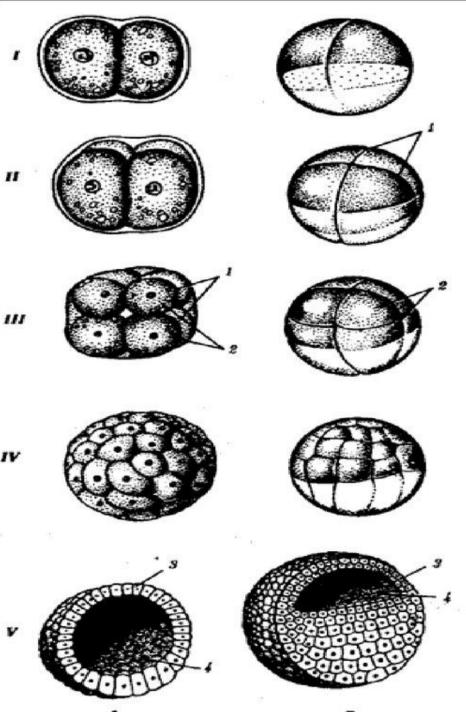
дробление.

Неполное

дробление.

дискоидальное

поверхности желтка.

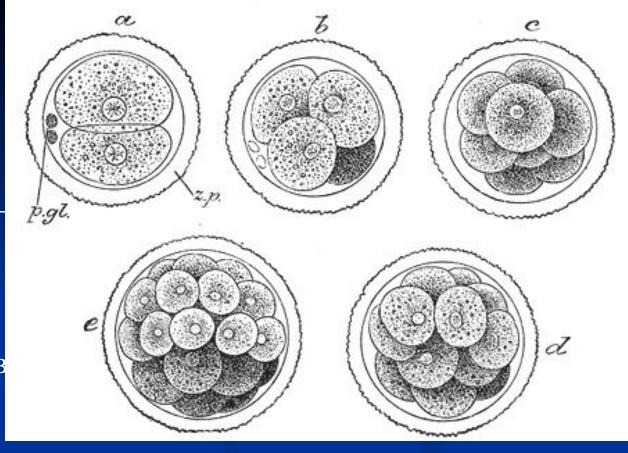

Неполное

дробление.

поверхностное

поверхности зародыша.

Количество и распределение желтка относительно ядра.	Небольшое количество желтка, распределенного равномерно.	Среднее количество желтка, который сосредоточен у вегетативного полюса	Большое количество желтка, ядро расположено на анимальном полюсе.	Большое количество желтка, ядро расположено в центре зиготы.
Описание типа дробления.	Зародыш целиком разделяется на клетки,образующиеся бластомеры примерно одинакового размера.	Зародыш целиком разделяется на клетки,но бластомеры крупнее на вегетативном полюсе.	Первые борозды дробления не могут "прорезать" всю толщу желтка, и зародыш временно сохраняет синцитиальное строение, причем борозды образуются лишь в районе анимального полюса.	При делении ядра зиготы часть дочерних ядер остаются в толще желтка, а большинство мигрируют к поверхности, где располагаются по всей поверхности. Через некоторое время между этими ядрами образуются клеточные перегородки.
Результат дробления.	Целобластула : шарик со стенками одинаковой толщины с полостью внутри (бластоцель).	Амфибластула : шарик, у которого стенка на вегетативном полюсе толще.	Дискобластула : зародышевый диск - "шапочка" из не полностью разделенных клеток, которые лежат на	Перибластула: не полностью отделившиеся бластомеры располагаются по всей поверхности зародыша.



Дробление у хордовых животных с разным типом яйцеклетки.

А— ланцетник; Б—
лягушка; В— птица; Г—
млекопитающее:
І—два бластомера, ІІ—
четыре бластомера, ІІІ—
восемь бластомеров, ІV—
морула, V—бластула;

Особенности дробления.

- 1) Асинхронное раннее дробление:
 - I борозда деления меридиональная.
 - II борозда в одном бластомере меридиональная, а в другом экваториальная.

Особенностью дробления является выраженная асинхронность, т.е. зародыш может содержать непарное количество клеток.

С первых же дроблений зиготы формируется два вида бластомеров – «темные» и «светлые.

«Светлые» более мелкие, делятся быстрее и располагаются одним слоем вокруг «темных», Из светлых затем образуется трофобласт, который будет связывать зародыш с материнским организмом, а из темных эмбриобласт, из которого образуется тело зародыша и внезародышевые органы: амнион, желточный мешок, аллантоис).

Геном активируется в течение раннего дробления и продуцирует необходимые вещества для его продолжения.

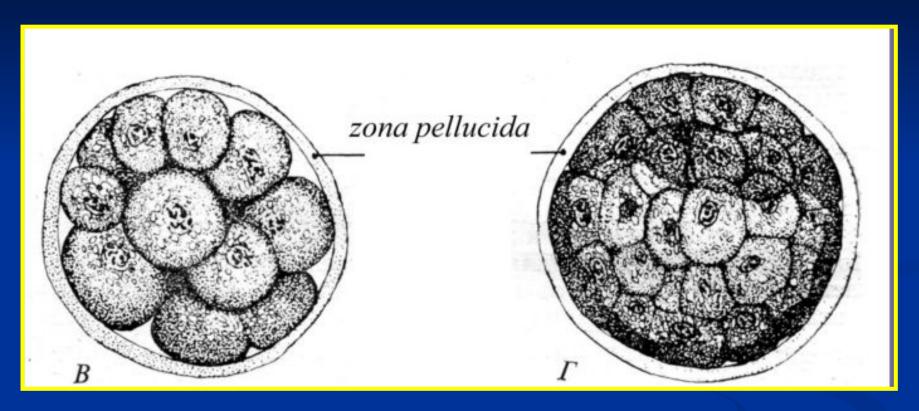
Феномен компактизации.

На 8-клеточной стадии клетки зародыша плотно прижимаются друг к другу и образуют компактный шар. Эта композиция стабилизируется благодаря плотным контактам между соседними клетками, герметично закрывающими внутреннюю часть шара. Внутри образуются щелевидные контакты, позволяющие перемещаться между клетками небольшим молекулам и ионам.

МОРУЛА

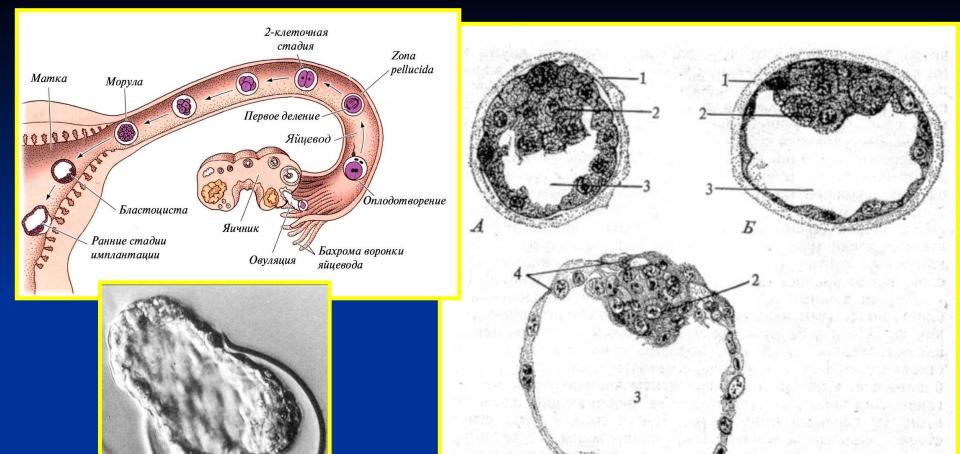

Морула -16-клеточный зародыш.

1-2 внутренних клеток, из которых разовьется зародыш.


Их окружает группа клеток – трофобластов, - образуя трофоэктодерму, из которой развиваются внезародышевые структуры, в т.ч. хорион.

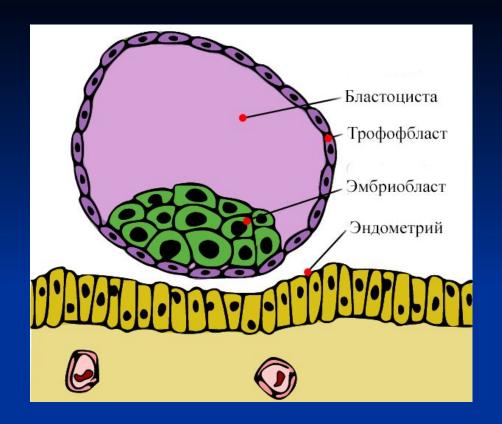
Эти 2 слоя к 64-клеточной стадии оказываются полностью Это разграничены И не смешиваются. первая дифференцировка в развитии.

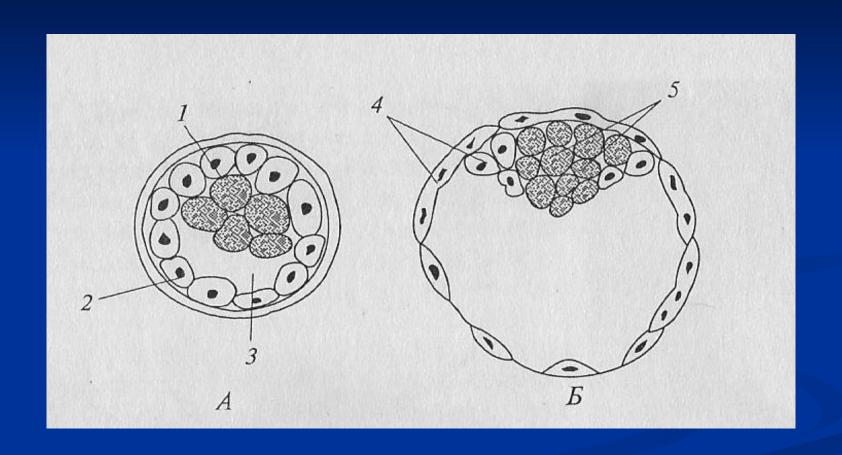
4-ый день. Стадия Морулы.

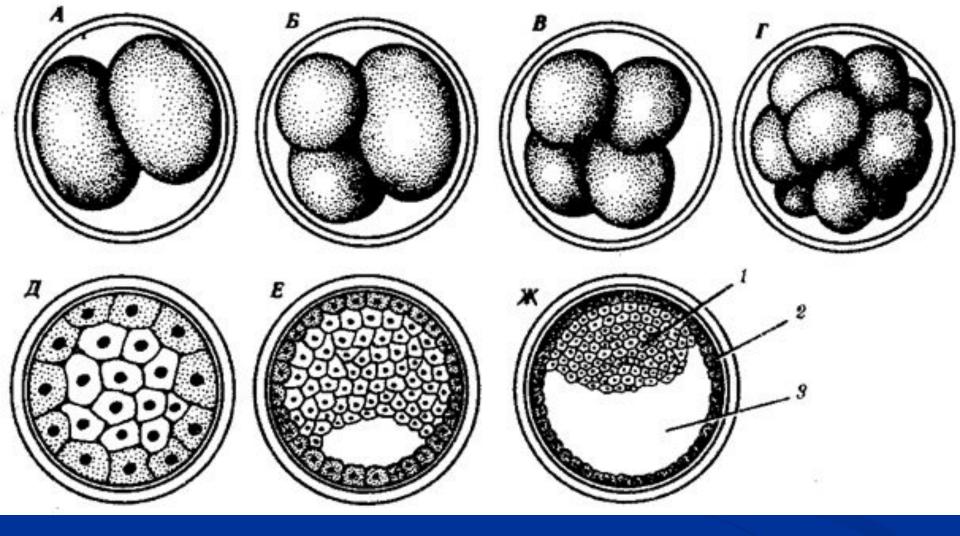


на четвёртые СУТКИ Примерно после оплодотворения эмбрион, состоящий 16 клеток, ИЗ напоминает форме ПО тутовую ягоду и называется морулой.

16-ти клеточный зародыш


бластула


После стадии 16-ти бластомеров начинается уплощение клеток наружного слоя, кавитация и сегрегация двух клеточных линий:


- •трофобласта
- •эмбрибласта.

В результате образуется бластоциста с полостью внутри.

на 3-4 сутки начинается формирование бластоцисты - полого пузырька, заполненного жидкостью Клетки трофобласта секретируют жидкость внутрь и образуется *бластоцель*. Клетки внутренней массы растут на одной стороне трофобласта.

А—два бластомера; Б—три бластомера; В—четыре бластомера; Г—морула; Д—разрез морулы; Е, Ж—разрез ранней и поздней бластоцисты: 1—эмбриобласт, 2—трофобласт, 3—бластоцель

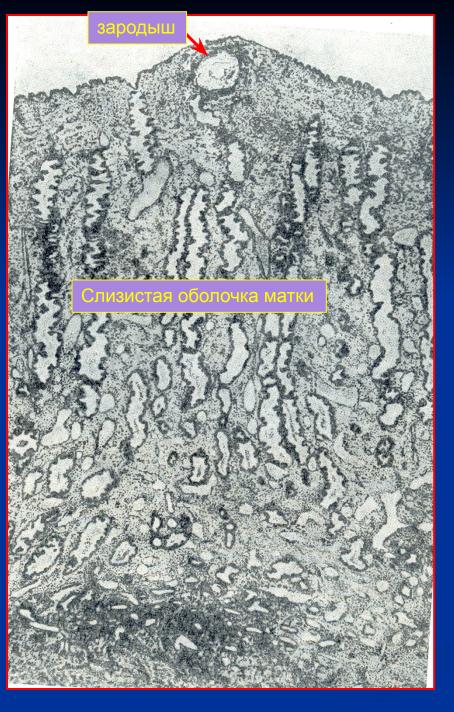
Имплантация

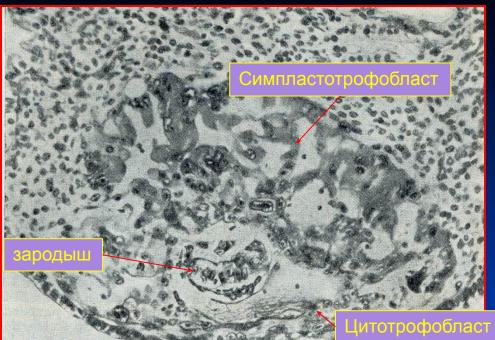
На 5-7 сутки в трофобласте увеличивается количество лизосом, в которых накапливаются ферменты, обеспечивающие разрушение (лизис) тканей матки и → внедрению зародыша в толщу слизистой оболочки матки — имплантации (около 40 ч). Различаются 2 стадии имплантации:

- → *Адгезия* (прилипание) трофобласт прикрепляется к слизистой оболочке матки, в нем начинают дифференцироваться 2 слоя цитотрофобласт и симпластотрофобласт.
- → *Инвазия* (проникновение) симпластотрофобласт, продуцируя протеолитические ферменты, разрушает слизистую оболочку матки. При этом формирующиеся ворсинки трофобласта, внедряясь в матку, разрушают ее эпителий, затем подлежащую соединительную ткань и стенки сосудов, и трофобласт вступает в непосредственный контакт с кровью материнских сосудов.

Гематотрофный тип питания, сменяющий гистиотрофный, сопровождается переходом к новому этапу эмбриогенеза - ко второй фазе гаструляции и закладке внезародышевых органов.

ИМПЛАНТАЦИЯ

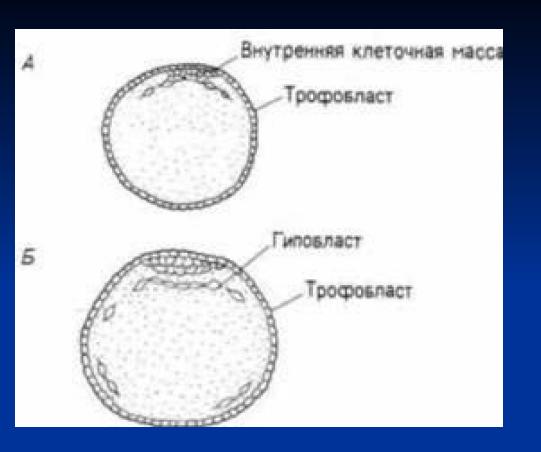

1 ФАЗА – АДГЕЗИЯ


• образование симпластотрофобласта и цитотрофобласта

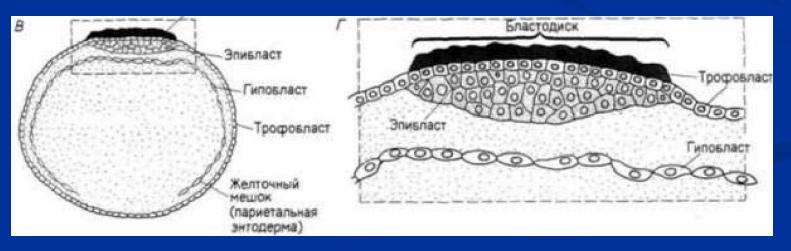
2 ФАЗА – ИНВАЗИЯ

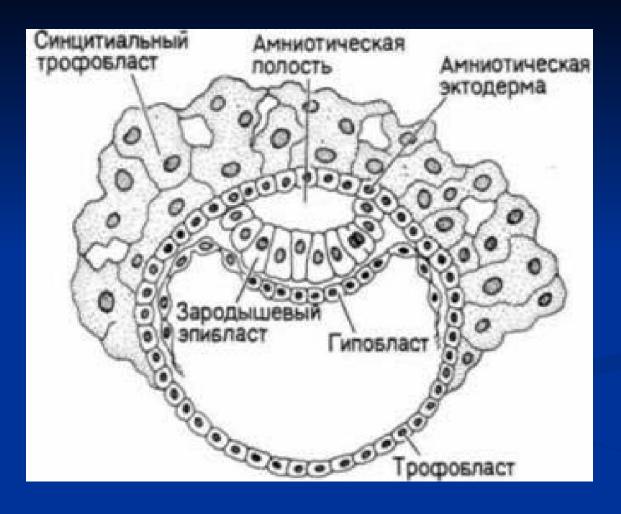
• внедрение зародыша в толщу матки

PELLUCIDA СИНЦИТИОТРОФОБЛАСТ КАПИЛЛЯР КАПИЛЛЯР КАПИЛЛЯР ДЕЦИДУАЛЬНАЯ ОБОЛОЧКА СТРОМА МАТКИ плод ВНУТРЕННЯЯ ВНУТРЕННЯЯ **КЛЕТОЧНАЯ КЛЕТОЧНАЯ** MACCA MACCA ЭПИТЕЛИЙ МАТКИ ЭПИТЕЛИЙ СИНЦИТИОТРОФОБЛАСТ МАТКИ ТРОФОБЛАСТ


Гаструляция – образование зародышевых листков

<u>Первая фаза гаструляции</u> происходит путем *деламинации*, клетки эмбриобласта расщепляются на 2 листка:

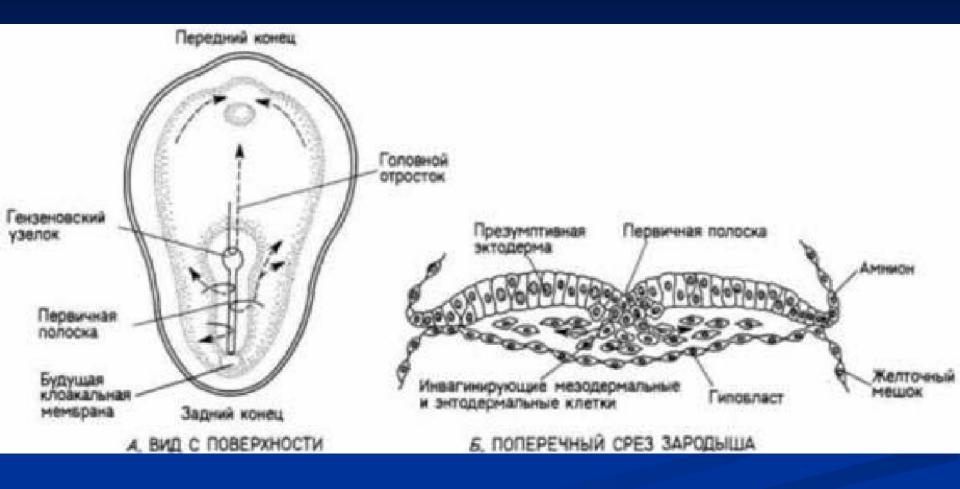

- •наружный эпибласт (включает материал эктодермы, нервной пластинки, мезодермы и хорды), обращенный к трофобласту,
- •внутренний *гипобласт* (включает материал зародышевой и внезародышевой энтодермы), обращенный в полость бластоцисты.


На 7-е сутки из зародышевого щитка выселяются клетки, которые располагаются в полости бластоцисты и формируют *внезародышевую мезодерму* (мезенхиму), подрастает к трофобласту и внедряется в него → формируется *хорион* (ворсинчатая оболочка зародыша с первичными хориальными ворсинками).

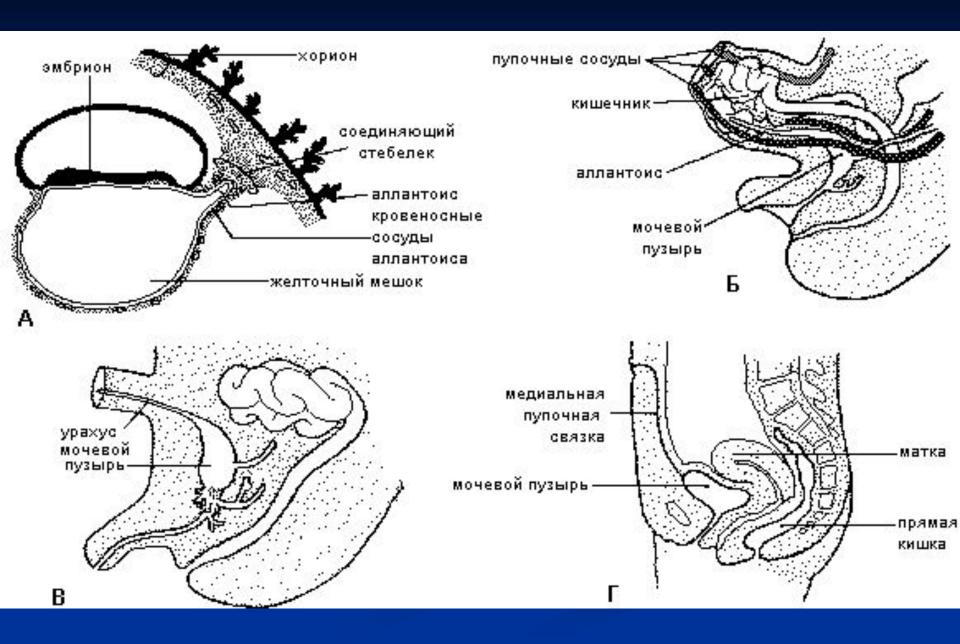
Внезародышевая мезодерма участвует в формировании закладок амниотического (вместе с эктодермой) и желточного (вместе с энтодермой) пузырьков. Трофобласт вместе с подстилающей его внезародышевой мезодермой образует хорион. В части зародыша, которая обращена в глубь стенки матки, располагаются прилегающие друг к другу амниотический пузырек и желточный пузырек (зародышевый щиток). Они прикреплены к хориону при помощи амниотической, или зародышевой, ножки.

Бластоциста млекопитающих перед началом гаструляции.

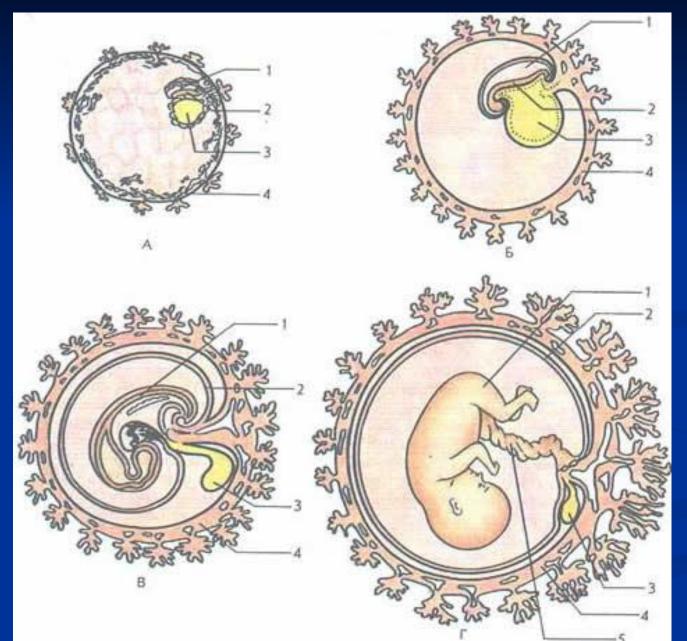
Формирование амниона у зародыша человека. Вторая фаза гаструляции начинается на 14-15-е сутки. В результате процесса иммиграции клеточного материала образуется *первичная полоска* и *первичный узелок*. Ямка на вершине узелка, постепенно углубляется и прорывается через эктодерму. Эпибласт через дорсальную губу смещается в пространство между дном амниотического пузырька и крышей желточного, давая *хордальный отросток*. Зародыш приобретает трехслойное строение. В амниотическую ножку из заднего отдела кишечной трубки врастает небольшой вырост - *аллантоис*.

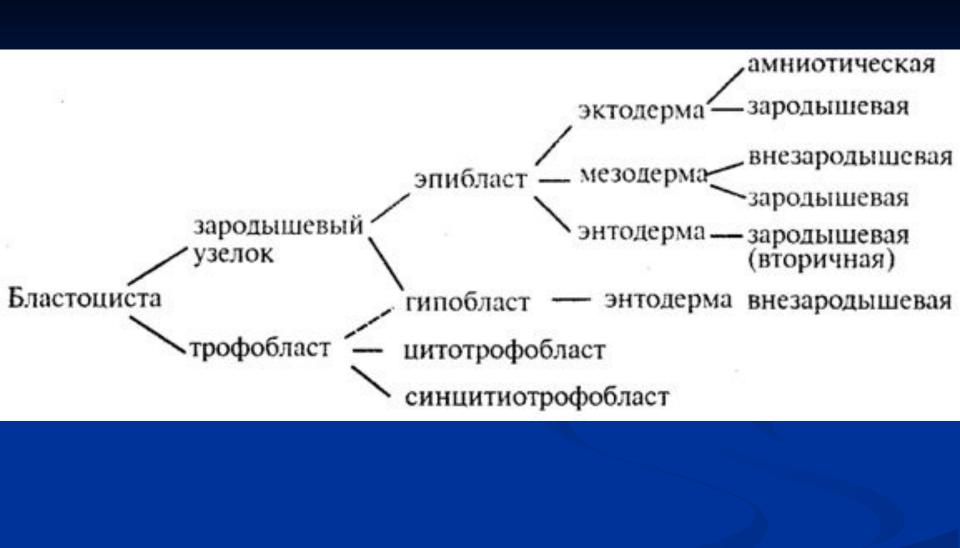

→ Завершается закладка всех зародышевых листков и всех внезародышевых органов.

Из головного узелка наблюдается массовое выселение клеток, которые, располагаясь между экто- и энтодермой, и образуют зачаток хорды. Стенки амниотического пузырька и желточного мешка на большем протяжении двухслойны. В стенке желточного мешка происходит образование кровяных островков и первичных кровеносных сосудов, за счет которых осуществляется связь тела эмбриона с хорионом. Полость плодного пузыря выстлана хорошо развитым наружным листком мезодермы, которая образует хориальные ворсины. Стенки желточного мешка и амниотического пузырька выстланы однослойным эпителием (энто- и эктодерма) и мезодермой.


Питание и дыхание эмбриона происходит посредством аллантохориона. Первичные ворсинки омываются материнской кровью.

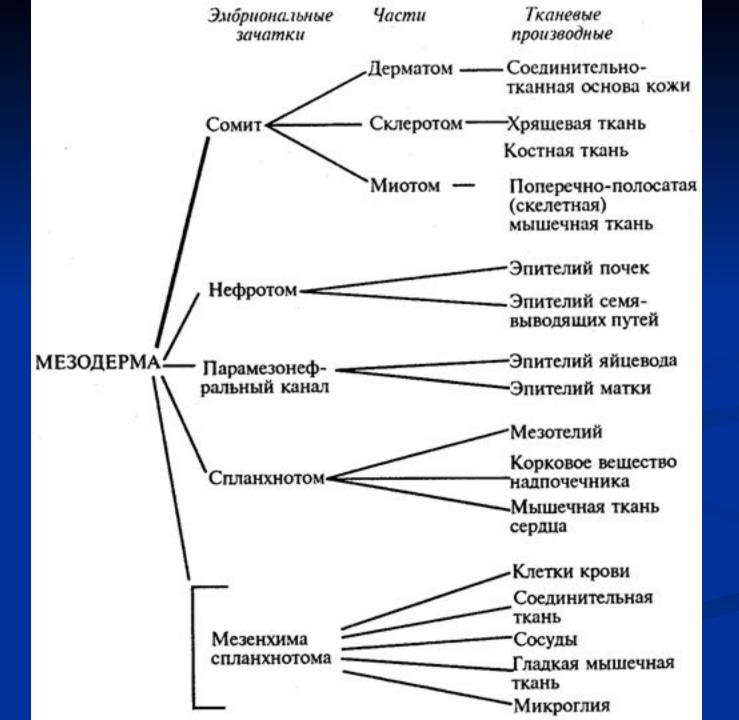
С 20-21-х суток → обособление тела зародыша от внезародышевых органов и окончательное формирование осевых зачатков. Происходит дифференцировка мезодермы и расчленение ее на сомиты. Поэтому данный период называют **сомитным**. Образуется туловищная складка. Зародыш отделяется от желточного мешка, пока не оказывается связанным с ним стебельком, при этом формируется кишечная трубка.


<u>Клеточные движения в период гаструляции у</u> <u>млекопитающих.</u>


Развитие аллантоиса

Развитие внезародышевых органов у зародыша человека

- 1- амниотический пузырек
 2- тело эмбриона
 3 желточный
- мешок
 4 –ворсины
 хориона
 5 пупочный
 канатик

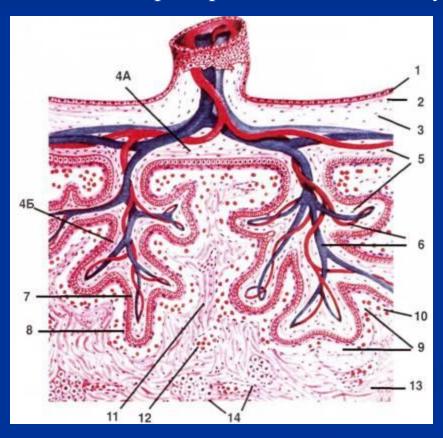

<u>ДИФФЕРЕНЦИРОВКА</u> ЗАРОДЫШЕВЫХ ЗАЧАТКОВ

- 1) Дифференцировка эктодермы.
- Нейрулиция процесс образования нервной трубки. Замыкание нервной трубки начинается в шейном отделе. В краниальном направлении формируются мозговые пузырьки. Клетки эктодермы образуют нервный гребень. Они мигрируют в поверхностном слое, дерме, в брюшном направлении, образуя парасимпатические и симпатические ганглии и мозговое вещество надпочечников. Часть клеток остается в области нервного гребня, формируя ганглиозные пластинки, они сегментируются и дают начало спинномозговым узлам. Хордальный отросток рассасывается.
 - 2) Дифференцировка мезодермы с 20-х суток.
- В отличие вентральные отделы мезодермы не сегментируются, а расщепляются на 2 листка висцеральный и париетальный. Небольшой участок мезодермы, связывающий сомиты мезодермой, разделяется на сегменты сегментные ножки.

- 3) Мезенхима возникает из мезодермы.
- 4) Дифференцировка энтодермы.

Туловищная складка отделяет зародышевую энтодерму будушей кишки от внезародышевой энтодермы желточного мешка. В начале 4-й недели на переднем конце зародыша образуется эктодермальное впячивание - ротовая ямка, которая доходит до переднего конца кишки и после прорыва разделяющей их мембраны превращается в ротовое отверстие будущего ребенка.

Кишечная трубка образуется как часть энтодермы желточного мешка, затем развивается из прехордальной пластинки. Мезенхима кишечной трубки преобразуется в соединительную ткань и гладкую мускулатуру.



<u>ВНЕЗАРОДЫШЕВЫЕ ОРГАНЫ</u>

хорион.

Состоит из двух структурных компонентов - эпителия и внезародышевой мезенхимы.

Разделяется на два отдела - ветвистый и гладкий. В области ветвистого хориона формируется плацента. Ветвистый хорион к 3 мес с основной отпадающей оболочкой приобретает дискоидальную форму.

ПЛАЦЕНТА, ИЛИ ДЕТСКОЕ МЕСТО.

Плацента - внезародышевый орган, за счет которого устанавливается связь зародыша с организмом матери. Плацента человека относится к типу дискоидальных гемохориальных ворсинчатых плацент.

Функции плаценты:

трофическая экскреторная (для плода) эндокринная (вырабатывает хориальный гонадотропин, прогестерон, плацентарный лактоген, эстрогены и др.) защитная (включая иммунологическую защиту).

В плаценте различают:

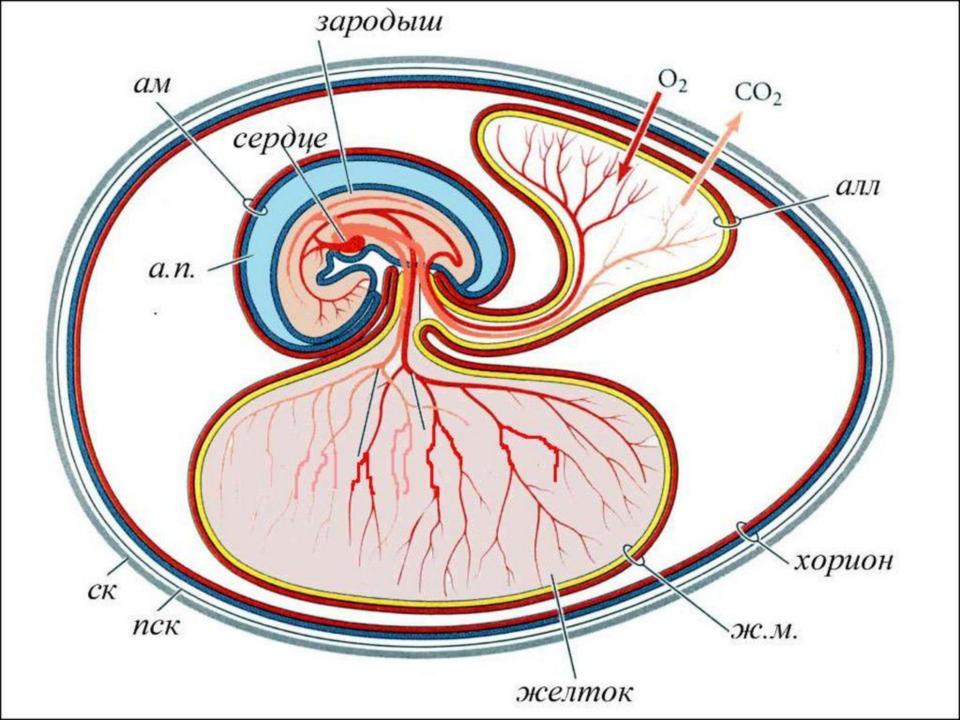
зародышевую (плодную) часть, которая представлена ветвистым хорионом и приросшей к нему амниотической оболочкой;

материнскую (маточную) часть - видоизмененная базальная часть эндометрия.

Развитие на 3-й неделе, когда во вторичные ворсины начинают врастать сосуды и образовываться *тетичные ворсины*.

В соединительной ткани хориона содержится значительное количество гиалуроновой и хондроитинсерной кислот, с которыми связана регуляция проницаемости плаценты.

Происходят разрушение слизистой оболочки матки и смена гистиотрофного питания на гематотрофное. Ворсины хориона омываются кровью матери.


С увеличением срока беременности появляются фиброциты и трофобласты. <u>Базальный слой эндометрия</u> - соединительная ткань слизистой оболочки матки, содержащая *децидуальные* клетки. Трофобласты базального слоя обеспечивают иммунологический гомеостаза в системе мать - плод.

Гемохориальный барьер, разделяющий оба кровотока, состоит из:

- •эндотелия сосудов плода
- •окружающей сосуды соединительной ткани
- •эпителия хориальных ворсин (цитотрофобласт, синцитиотрофобласт)
- •фибриноида, который местами покрывает ворсины снаружи.

Формирование плаценты заканчивается в конце 3-го месяца беременности.

желточный мешок.

Образован внезародышевыми энтодермой и мезодермой, принимает активное участие в питании и дыхании эмбриона. Ж. мешок смещается в пространство между мезенхимой хориона и амниотической оболочкой. До 7-8 недель выполняет кроветворную функцию, а затем подвергается обратному развитию. В его стенке формируются первичные половые клетки - гонобласты, мигрирующие с током крови в зачатки половых желез.

АМНИОН.

Образует стенку резервуара, в котором находится плод. Амнион образует околоплодные воды (средау для развивающегося организма, предохранение от механического повреждения). На поверхности эпителия имеются микроворсинки. Пучки коллагеновых волокон связывают амнион с хорионом. Связь эта очень непрочная.

АЛЛАНТОИС.

Небольшой пальцевидный отросток энтодермы, врастающий в амниотическую ножку. По нему к хориону растут сосуды, конечные разветвления которых залегают в строме ворсинок и участвуют в питании и дыхания зародыша. На 2-м месяце эмбриогенеза аллантоис редуцируется.

ПУПОЧНЫЙ КАНАТИК.

Образуется из мезенхимы, находящейся в амниотической ножке и желточном стебельке, аллантоиса и растущих по нему сосудов. Желточный стебелек и аллантоис быстро редуцируются, и в пупочном канатике новорожденного обнаруживаются лишь их остатки.

Это упругое соединительно-тканное образование, в котором проходят две пупочные артерии и пупочная вена. В межклеточном веществе слизистой соединительной ткани содержится много гиалуроновой кислоты (обеспечивает тургор и упругость канатика).