

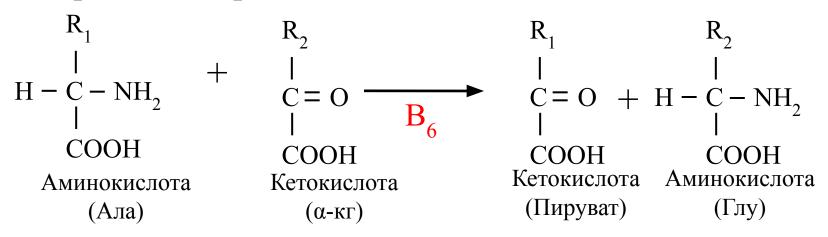
ЛЕКЦИЯ № 19

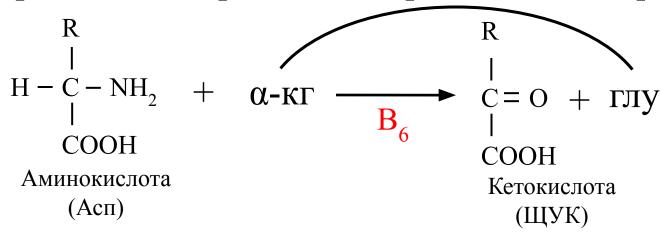
Обмен и функции **Витаминов В**₆, **В**₇, **В**₉, **В**₁₂, **С**.

(<u>пиридоксин</u>(пиридоксин, <u>пиридоксаль</u>(пири доксин, пиридоксаль, <u>пиридоксамин</u>(пиридоксин, пиридоксаль, пиридоксамин, а также их

Основные продукты, содержащие витамин B_6

- мясные продукты (особенно печень, сердце, почки);
- рыба;
- в меньшей степени растительные продукты (бобы, горошек, рис, картофель);
- свежие овощи;
- микрофлорой кишечника человека синтезируется небольшое количество.

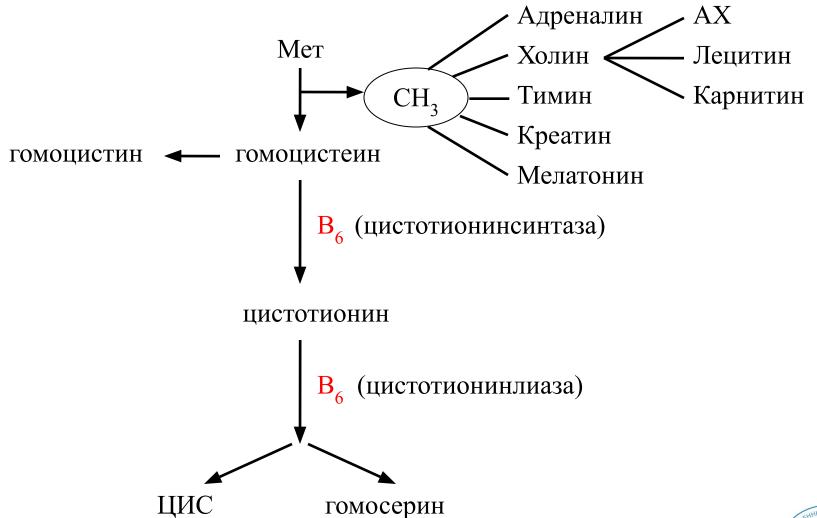



Участие В в метаболизме

1. Обмен аминокислот

• Трансаминирование;

• Трансдезаминирование (непрямое дезаминирование);


Участие В в метаболизме

Декарбоксилирование

ГЛУ — Б ГАМК ГИС — ГИСТАМИН В
6
 Серотонин АСП — 6 В $^$

• Участие в обмене серосодержащих аминокислот (мет, цис)

2. Участие в биосинтезе гема (эритроцит)

σ-левуленатсинтаза B_6 Гем **→** Нb

3. Участие в синтезе РР и СоА

ТРИ ки уренин никот инамид
$$\frac{B_6}{B_6}$$
 АСП $\frac{G}{B_6}$ В-ала

Недостаточность (гиповитаминоз)

- 1. У младенцев при искусственном вскармливании и не использовании рекомендуемых педиатрами смесей развивается судоржный синдром и анемия.
- 2. У взрослых специфических признаков нет, но могут развиваться конънюктивит, себорейный дерматит, полиневрит).
- 3. Нарушаются функции центральной и периферической нервной системы, появляются вялость, сонливость, повышенная возбудимость, периферический неврит, нейродермит, себорейный дерматит.
- 4. В полости рта ангулярный хейлит, стоматит, глоссит. Поражение языка характеризуется атрофией и очаговой десквамацией сосочков, умеренно выраженной складчатостью языка, извращением и понижением вкусовой чувствительности, рецидивирующей глоссалгией.

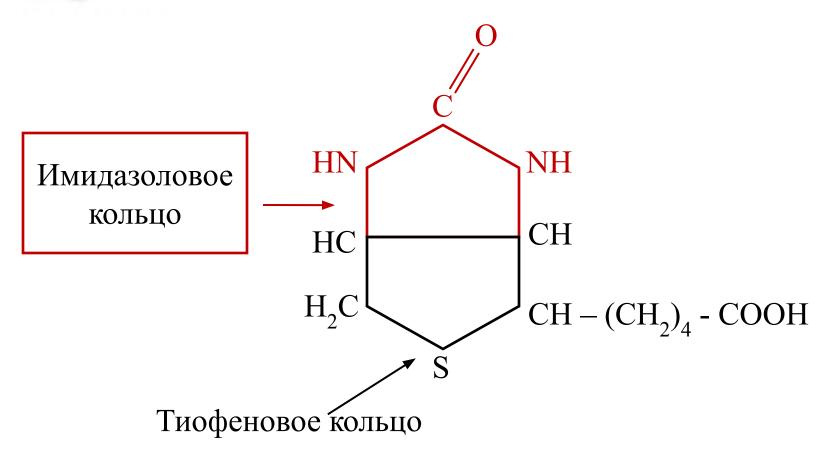
Врожденные нарушения обмена В

Название болезни	Причина нарушения	Признаки нарушения	Лечение
Гомоцистеинурия	Генетический дефект цистотинонинсинтазы (1:20 тыс), гомоцистеин ингибирует некоторые ферменты соединительной, мышечной и нервной ткани Гомоцистин Гомоцистин В ₆ Цистотионин	Нарушения формирования скелета, вывих хрусталика, психические расстройства, тромбоэмболии, нарушение со стороны сердечнососудистой системы. Биохимия: повышение в крови содержания гомоцистеина, гомоцистина, в моче гомоцистеинурия.	Мегавитамино-терапия
Цистотионинурия	Дефект цистотионинлиазы Цистоти- В ₆ Цис Гомо- серин	Биохимия: повышение в крови содержания цистотионина, в моче цистотионинурия. Ряд людей здоровы с этим дефектом, часть — отставание в умственном развитии	Мегавитамино- терапия

Врожденные нарушения обмена В

Название болезни	Причина нарушения	Признаки нарушения	Лечение
Пиридиназави- симый судо- рожный син- дром	Дефект глутаматде- карбоксилазы Γ ЛУ B_6 Γ АМК	В первые 10 дней жизни: тоническо-клонические судороги, затруднение дыхания, цианоз, обильное слюноотделение	Мегавита- минотерапия (как можно раньше)
Пиридиизависимая анемия	Дефект σ —аминолеву- ленатсинтазы ГЛУ + сукцинил - CoA \longrightarrow σ -ЛК \longrightarrow ГЕМ	Гипохромная анемия, микроцитоз, сидеробластоз (много Fe в эритроцитах) не коррегируется кровью, Fe, B ₁₂ , B ₁₀	Мегавитами- нотерапия

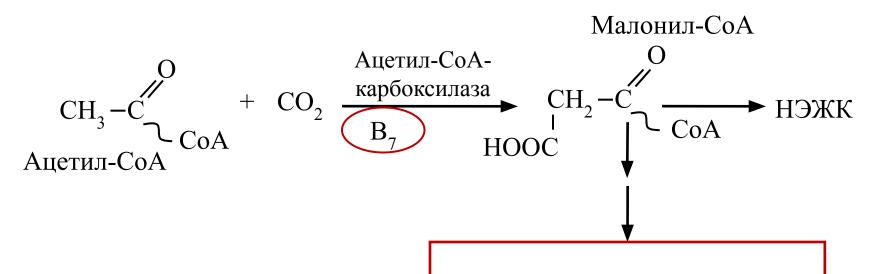
Гипервитаминоз



Не описан, но нельзя использовать терапевтические дозы (до 100 беременным женщинам на ранних сроках (не более 10-15 мг), т.к. повышается содержание серотонина в крови матери и и возникает неблагоприятное плода влияние на развитие зародыша и питание плаценты.

Витамин В, (биотин, Н)

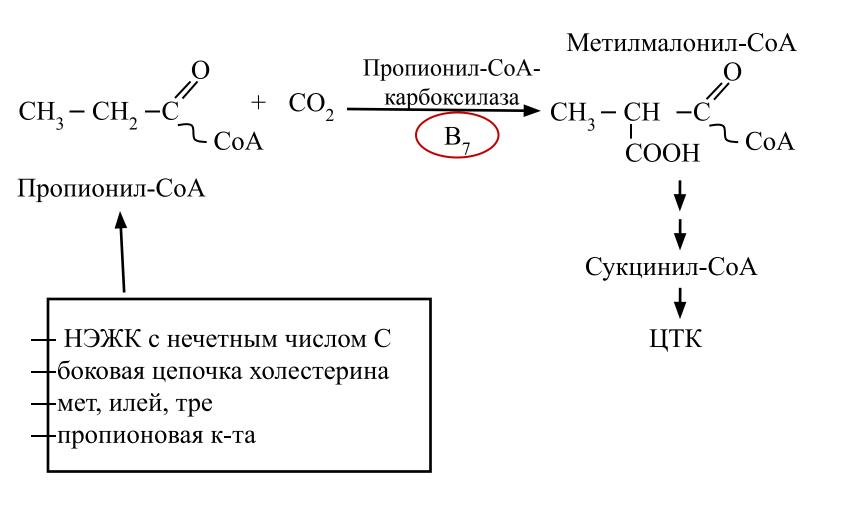
Основные продукты, содержащие биотин



- мясные продукты;
- яичный желток;
- растительные продукты (особенно бобы, соя, цветная капуста);
- пшенная крупа;
- микрофлорой кишечника человека может синтезироваться полностью, исходя из суточной потребности.

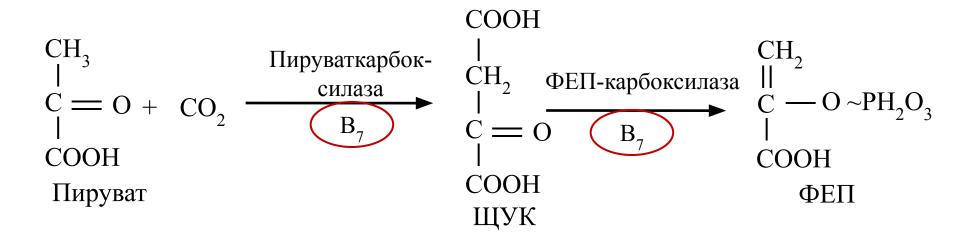
Участие В₇ в метаболизме (карбоксилирование, транскарбоксилирование)

1. Участие в биосинтезе жирных кислот



Пальмитиновая, стеариновая, олеиновая жирные кислоты

Участие В₇ в метаболизме (карбоксилирование, транскарбоксилирование)


2. Обмен жирных кислот с нечетным числом атомов углерода

Участие В₇ в метаболизме (карбоксилирование, транскарбоксилирование)

3. Глюконеогенез

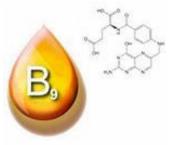
4. Участие в обмене витаминов B_1 , B_5 , B_9 , B_{12} , C

Недостаточность биотина (гиповитаминоз)

Встречается крайне редко, обычно при длительном поедании сырых яиц:

- -кожа (шелушение, бледность);
- -язык (атрофия вкусовых сосочков, глоссит);
- -мышечные боли.

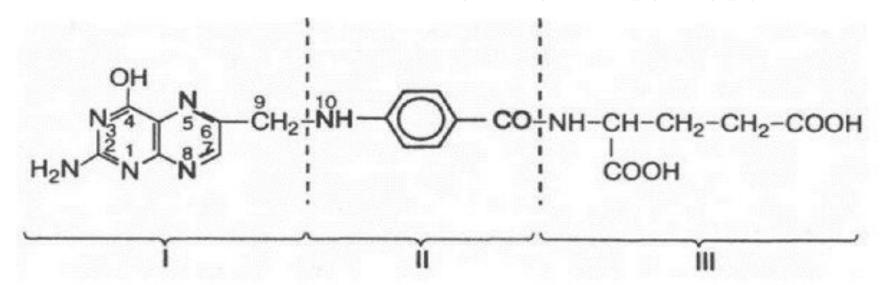
Врожденные нарушения обмена В7


Причина нарушения

Признаки нарушения

Лечение

Название болезни

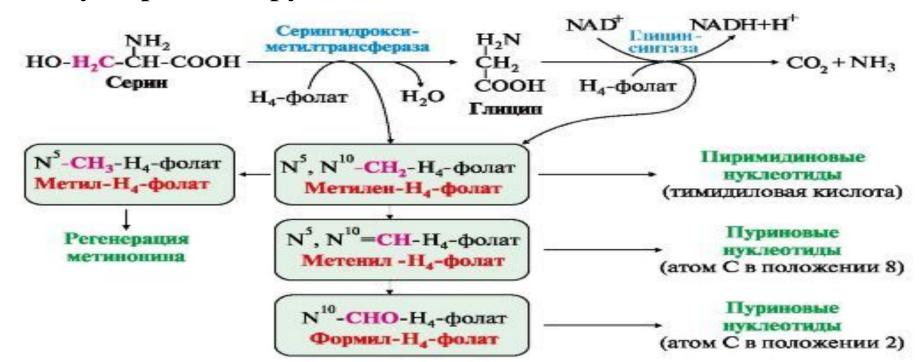

Пропионатаци- демия	Дефект пропиоил-СоА-карбоксилазы Холестерин, мет, илей, тре, НЭЖК, пропионовая к-та Пропионил-СоА Метил-малонил СоА Синтез жирных кислот с нечетным числом С ф Синтез аномальных фосфолипидов мозга	На первой неделе жизни: тяжелый кетоацидоз при кормлении (рвота, обезвоживание, мышечная слабость, сонливость, кома), часто летальный исход. Психические, неврологические расстройства Биохимия: накопление в крови пропионил-СоА	Ограничение белка; Симптоматическое лечение; Мегавитаминотерапия.
Тиамин зависимый лактатацидоз	АЛА Лактат ПВК В ₇	Развивается кетоацидоз Биохимия: накопление в крови пировиноградной, молочной кислот, АЛА	Мегавитаминотерапия (B ₁ , B ₇)

Витамин В9 (фолиевая кислота)

• Фолиевая кислота состоит из трех структурных единиц: остатка 2-амино-4-окси-6-метилптеридина (I), парааминобензойной (II) и L-глутаминовой (III) кислот и имеет следующую структуру:

Фолиевая (птероилглутаминовая) кислота

Основные продукты, содержащие фолиевую кислоту


- свежие овощи и зелень (особенно морковь, помидоры, лук, салаты, капуста);
- мясные продукты (особенно печень и почки);
- яичный желток;
- сыр;

• микрофлорой кишечника человека может синтезироваться некоторое количество суточной потребности.

Участие фолиевой кислоты в метаболизме

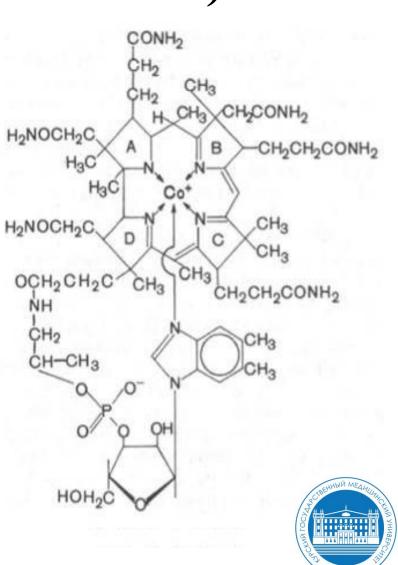
ТГФК (H_4 -фолат) образуется в печени из фолиевой кислоты (фолата) с участием ферментов фолатредуктазы и дигидрофолатредуктазы . Коферментом этих редуктаз является NADPH. Метиленовая группа - CH_2 - в молекуле метилен- H_4 -фолата может превращаться в другие одноуглеродные группы.

Недостаточность фолиевой кислоты (гиповитаминоз)

- 1. В развитых странах встречается редко. Основные причины развития: голодание, алкоголизм, беременность, длительный прием противосудоржных препаратов.
- 2. Яркая клиническая картина гиповитаминоза: мегалобластическая, пернициозная анемия Аддисона-Бирмера.
- 3. В крови: снижение эритроцитов гиперхромная анемия, мегалобластоз (появление недозрелых эритроцитов), макроцитоз, анизоцитоз. Лейкопения, многоядерные лейкоциты, тромбоцитопения.
- 4. В костном мозге: мегалобластоз (увеличение недозрелых эритроцитов), макроцитоз, фрагменты рахзрушенных эритроцитов.
- 5. Возможно обострение шизофрении, эпилепсии.

Врожденные нарушения обмена фолиевой кислоты

Название болезни	Причина нарушения	Признаки нарушения	Лечение
Фолатзави- симая мегабласти- ческая анемия	Врожденные нарушения синтеза рецепторов (всасывание) или фолатсвязывающего белка (транспорт)	Анемия	Мегавитами- нотерапия; Симптомати- ческое лечение
Мегабласти- ческая анемия	Дефект образования коферментов ФК———————————————————————————————————	Анемия	Мегавитами- нотерапия; Симптомати- ческое лечение



Витамин В12 (цианокобаламин)

Витаминами В₁₂ называют группу кобальтсодержащих

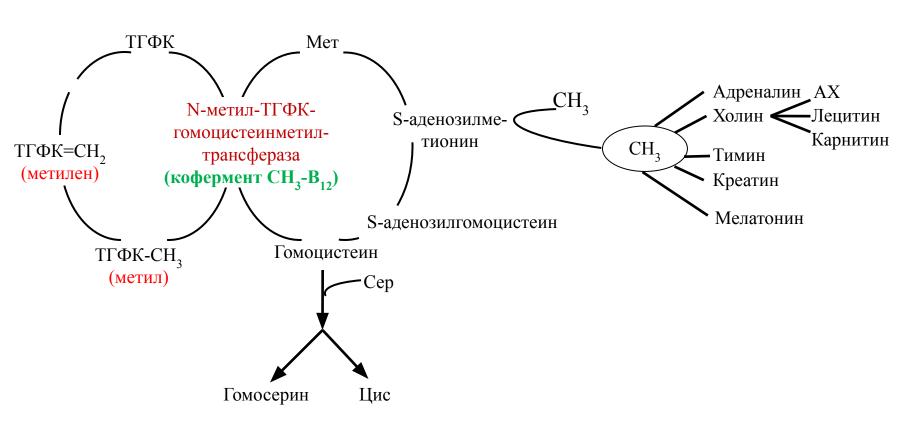
биологически активных веществ, называемых кобаламинами биологически активных веществ, называемых кобаламинами. К ним относят собственно цианокобаламин гидроксикобаламин и

TRA KOMONMOUTUL IO MANMIT

Основные продукты, содержащие витамин В12

Синтез: исключительно микроорганизмами животных и рыб:

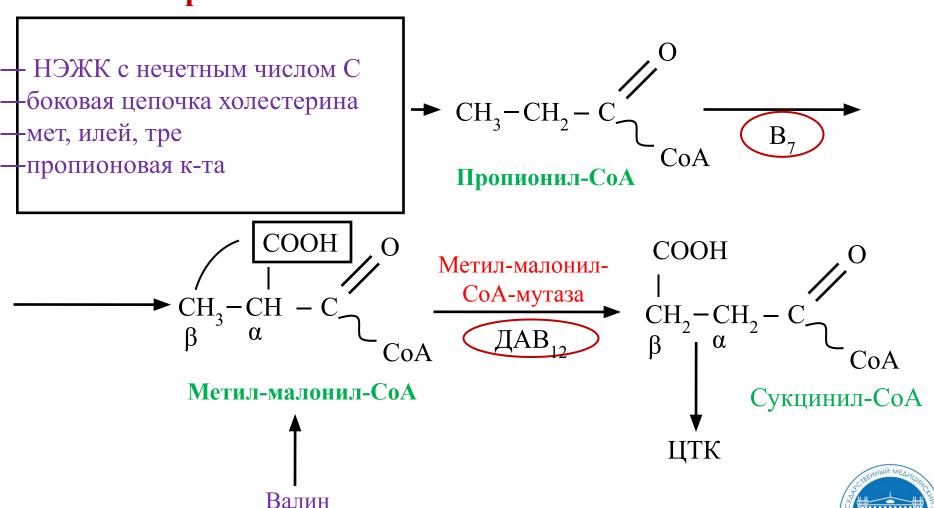
- •мясные продукты (особенно печень, почки);
- •рыба;
- •сыр;
- •микрофлорой кишечника человека может синтезироваться в небольших количествах, исходя из суточной потребности.


Участие витамина В₁, в метаболизме

Коферменты: 5-дезоксиаденозилкобаламин (ДA_{R12}), метилкобаламин (B_{12} -CH₃)

1. Активация фолиевой кислоты (ТГФК-СН₃ + В₁₂ →

$$(T\Gamma\Phi K-CH_3 + B_{12})$$


TΓΦΚ + B₁₂-CH₃

Участие витамина В₁₂ в метаболизме

2. Обмен пропионил - СоА

Гиповитаминоз кобаламина

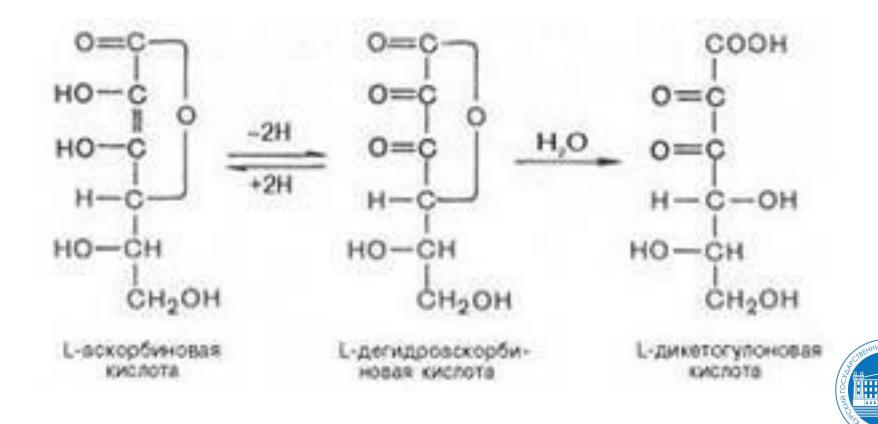
Кобаламин необходим для нормального функционирования фолиевой кислоты (активация) и если будет не хватать кобаламина, то может развиваться вторичный гиповитаминоз фолиевой кислоты и провляться это будет развитием мегалобластической анемией Аддисона-Бирмера.

Если организм хорошо обеспечен фолиевой кислотой, то развивается фуникулярный миелоз, характеризующийся дегенеративным поражением нервной ткани (полиневриты, парестезии, нарушение чувствительности, мышечные боли, слабость, психические расстройства). Это связано с накоплением метил-малонил-КоА, включением его в жирные кислоты с образование кислот с разветвленной углеродной цепью и включением последних в сфингомиелины с аномальными физико-химическими свойствами.

Гипервитаминоз кобаламина

Практически не бывает, хорошо переносится, но следует с осторожность применять:

- •при онкологических заболеваниях;
- •при склонности к повышенной свертываемости крови;
- •могут быть аллергические проявления.


Врожденные нарушения обмена В 12

Название болезни	Причина нарушения	Признаки нарушения	Лечение
В ₁₂ зависимая анемия	Нарушение всасывания (синтез мукополисахарида – внутреннего фактора), транспорта (ТК-1, ТК-2)	Анемия	Мегавитаминоте- рапия
Метилмалонат- ацидемия	Дефект фермента метил-малонил-СоА-мутазы: 1. Коферментная форма — нарушено превращение B_{12} в ДА- B_{12} 2. Апоферментная форма — нарушение синтеза апофермента	Развитие кетоацидоза, задержка роста, психического развития. Биохимия: накопление в крови пропионовой кислоты, метил-малонил-СоА, тромбоцитопения, лейкоцитопения	Ограничение белка; Симптоматичес- кое лечение; Мегавитамино- терапия.

Биологически активен только один из изомеров — *L*-аскорбиновая кислота, который называют витамином *C*.

Основные продукты, содержащие витамин С

Наиболее распространенный и требуемый по суточной дозе витамин:

- овощи (особенно лук, перец, капуста, укроп, хрен, горох);
- -фрукты (особенно смородина, малина, шиповник, клюква, клубника);
- -продукты животного происхождения (особенно печень, почки).

Содержание витамина в продуктах растительного происхождения зависит от многих условий (агротехника, удобрения, почва, климат).

Участие аскорбиновой кислоты в метаболизме

1. Процессы гидроксилирования:

- три окситриптофан серотонин
- фен тир тир тормоны (катехоламины, щитовидной железы)

2. Оптимизация тканевого дыхания, окислительно-восстановительных процессов;

4. Бактериостатическое действие.

Гиповитаминоз витамина С

Первые проявления: слабость, апатия, повышенная восприимчивость к простудным заболеваниям, снижение жизненного тонуса, кровоточивость десен при чистке зубов.

Заболевание – цинга (скорбут)

Геморрагические явления:

- •кровоточивость десен, синяки при ушибах, щипках, ударах незначительных;
- •кровотечения внешние (носовые, ушные, из ран);
- •геморрагический диатез;
- •кровотечения внутренние.

ГИПЕРВИТАМИНОЗ

Хорошо переносится, но осторожное применение при повышенной свертываемости крови и тромбофлебитах.

