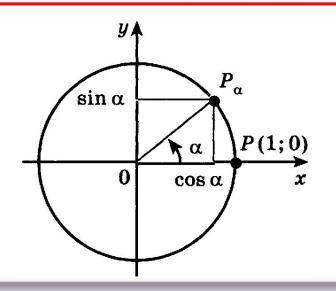
Определение синуса, косинуса и тангенса угла

Определение 1. Синусом угла α называется ордината точки, полученной поворотом точки (1; 0) вокруг начала координат на угол α (обозначается $\sin \alpha$).

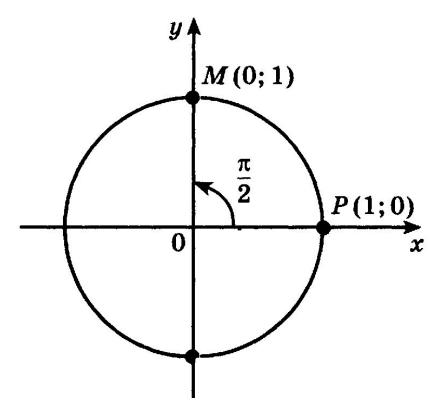
Определение 2. Косинусом угла α называется абсцисса точки, полученной поворотом точки (1; 0) вокруг начала координат на угол α (обозначается соs α).



P (1;0)
$$\longrightarrow$$
 P_{\alpha}(x; y)
 $x = \cos \alpha,$
 $y = \sin \alpha$

Например, при повороте точки (1; 0) на угол $\frac{\pi}{2}$, т. е. угол 90° , получается точка (0; 1).

$$\sin \frac{\pi}{2} = \sin 90^{\circ} = 1;$$
 $\cos \frac{\pi}{2} = \cos 90^{\circ} = 0.$

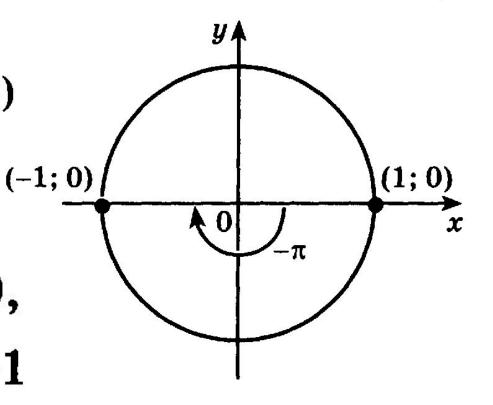


Задача 1 Найти $\sin(-\pi)$ и $\cos(-\pi)$.

$$(1; 0) \rightarrow (-1; 0)$$

 $\sin (-\pi)=0,$

$$\cos (-\pi) = -1$$

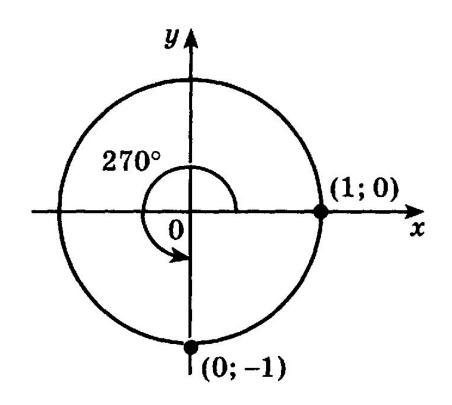


Задача 2 Найти $\sin 270^{\circ}$ и $\cos 270^{\circ}$.

$$(1; 0) \rightarrow (0; -1)$$

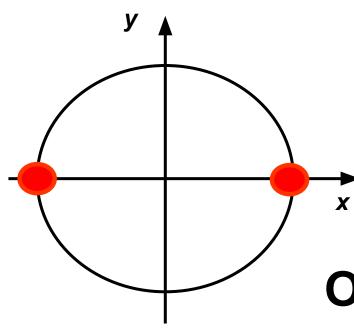
$$\sin 270^{\circ} = -1$$

 $\cos 270^{\circ} = 0$



Задача З

Решить уравнение $\sin x = 0$.

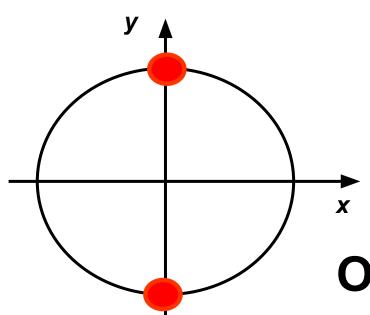


$$x = \pi k, k \in \mathbb{Z}.$$

OTBET: πk , $k \in \mathbb{Z}$.

Задача 4

Решить уравнение $\cos x = 0$.

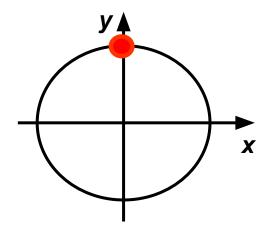


$$x=\frac{\pi}{2}+\pi k,\ k\in \mathbf{Z}.$$

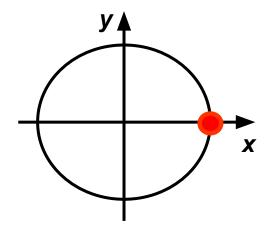
Otbet: $\frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$.

Задача 5 Решить уравнение:

1)
$$\sin x = 1$$
;



$$x=\frac{\pi}{2}+2\pi k,\ k\in Z;$$



$$x=2\pi k, k\in \mathbb{Z}.$$

ОТВЕТ: 1)
$$\frac{\pi}{2} + 2\pi k, k \in \mathbb{Z};$$

$$2) \quad 2\pi k, \ k \in \mathbb{Z}.$$

Определение 3. Тангенсом угла α называется отношение синуса угла α к его косинусу (обозначается tg α).

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$tg \ 0^{\circ} = \frac{\sin \theta}{\cos 0^{\circ}} = \frac{\theta}{1} = 0,$$

$$tg \ \frac{\pi}{4} = \frac{\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1.$$

$$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$$

ctg
$$270^{\circ} = \frac{\cos 270^{\circ}}{\sin 270^{\circ}} = \frac{0}{-1} = 0$$
,

$$ctg \frac{\pi}{4} = \frac{1}{tg \frac{\pi}{4}} = \frac{1}{1} = 1.$$

α	0 (0°)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4}$ (45°)	$\frac{\pi}{3}$ (60°)	$\frac{\pi}{2}$ (90°)	π (180°)	$\frac{3}{2}\pi$ (270°)	2π (360°)
siħα	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos α	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
tg a	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Не суще- ствует	0	Не суще- ствует	0
ctg α	Не суще- ствует	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	Не суще- ствует	0	Не суще- ствует

Задача 6 Вычислить $4 \sin \frac{\pi}{6} + \sqrt{3} \cos \frac{\pi}{6} - tg \frac{\pi}{4}$.

$$4\sin\frac{\pi}{6} + \sqrt{3}\cos\frac{\pi}{6} - tg\frac{\pi}{4} =$$

$$=4\cdot\frac{1}{2}+\sqrt{3}\cdot\frac{\sqrt{3}}{2}-1=2,5.$$