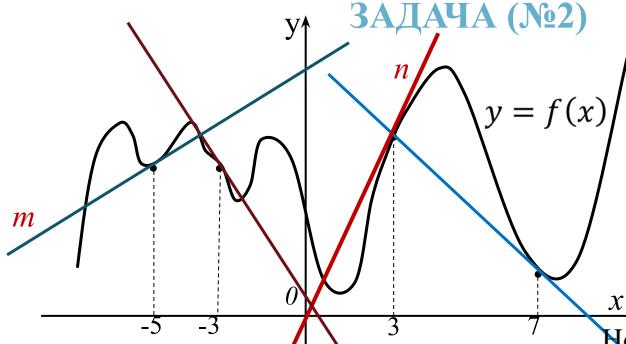

ПОДГОТОВКА К ЕГЭ ЗАДАЧА №7

Профильный уровень

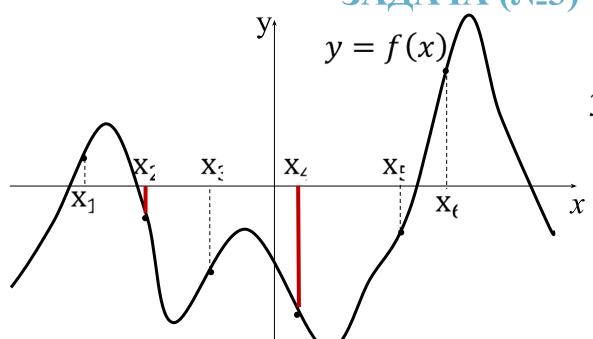


На рисунке изображён график функции y = f(x) и отмечены точки -7, -3, 1, 7. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Решение: Т.к. значение производной функции в точке равно $tg\alpha$ – угловому коэффициенту касательной, проведённой к графику этой функции в данной точке, проведём эти касательные.

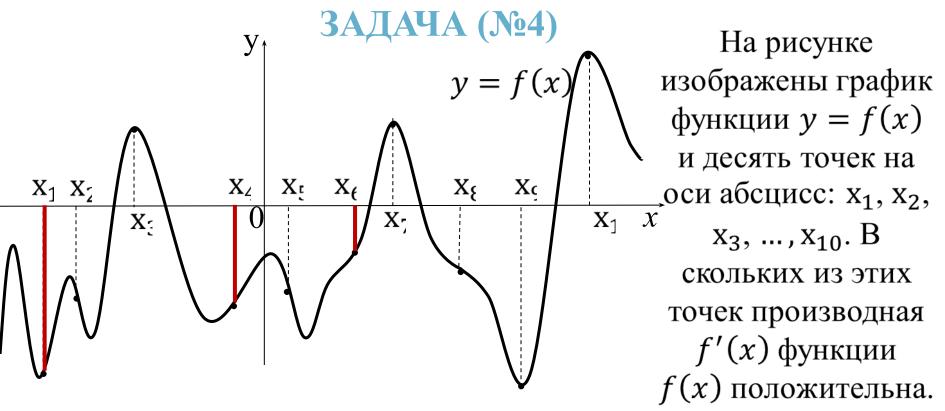
В точках x = -7 и x = -3 $tg\alpha > 0$, в точке x = 1 $tg\alpha = 0$.

В точке $x = 7 t g \alpha < 0$, \Rightarrow в этой точке значение производной наименьшее.

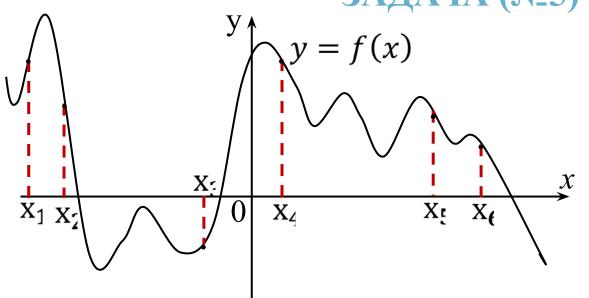

На рисунке изображён график функции y = f(x) и отмечены точки -5, -3, 3, 7. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку

Решение: Т.к. значение производной функции в точке равно $tg\alpha$ — угловому коэффициенту касательной, проведённой к графику этой функции в данной точке, проведём эти касательные.

В точках x = -3 и x = 7 $tg\alpha < 0$, в точках x = -5 и x = 3 $tg\alpha > 0$.


Но касательная n и положительное направление оси Ох образуют больший угол, чем касательная m, \Rightarrow в точке x = 3 значение производной наибольшее.

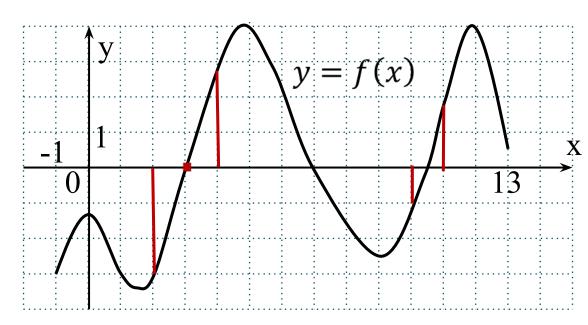
ЗАДАЧА (№3)


На рисунке изображён график функции y = f(x). Найдите среди точек х₁, х₂, х₃, х₄, х₅ и х₆ те точки, в которых производная функции f(x) отрицательна. В ответ запишите количество найденных точек.

Решение: Производная функции в точке отрицательна тогда и только тогда, когда эта точка является точкой убывания данной функции. Этому условию на рисунке удовлетворяют точки x_2 и x_4 . Следовательно, количество найденных точек равно 2.

Решение: Производная функции в точке положительна тогда и только тогда, когда эта точка является точкой возрастания данной функции. Этому условию на рисунке удовлетворяют точки x_1, x_4 и x_6 . Следовательно, количество найденных точек равно 3.

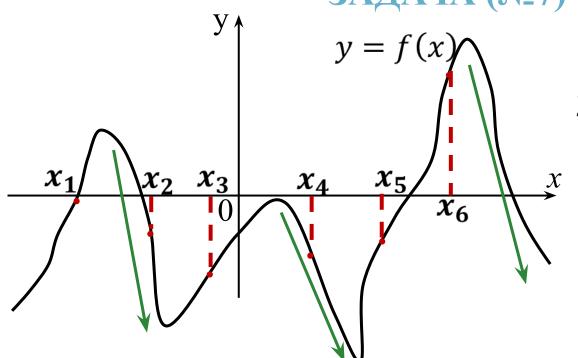
ЗАДАЧА (№5)



На рисунке изображён график функции y = f(x). Найдите среди точек x_1 , x_2 , x_3 , x_4 , x_5 и x_6 те точки, в которых производная функции f(x) отрицательна. В ответ запишите количество найденных

Решение: Производная функции в точке отрицательна тогда и только тогда, когда эта точка является точкой убывания данной функции. Этому условию на рисунке удовлетворяют точки x_2, x_4, x_5 и x_6 . Следовательно, количество найденных точек равно 4.

Ответ: 4.

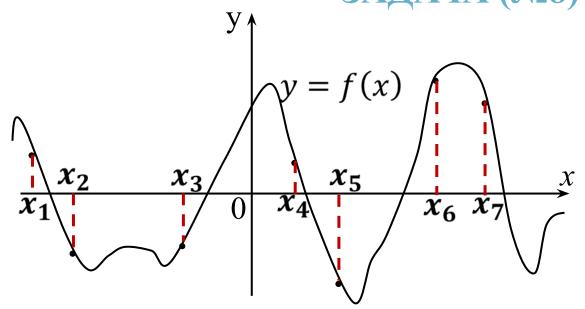

ЗАДАЧА (№6)

На рисунке изображён график функции y=f(x), определённой на х интервале (-1;13). Определите количество целых точек, в которых производная функции положительна.

Решение: Производная функции в точке положительна тогда и только тогда, когда эта точка является точкой возрастания данной функции. Этому условию на рисунке удовлетворяют точки абсциссы которых равны 3, 4, 5, 11, 12. Следовательно, количество найденных точек равно 5.

ЗАДАЧА (№7)

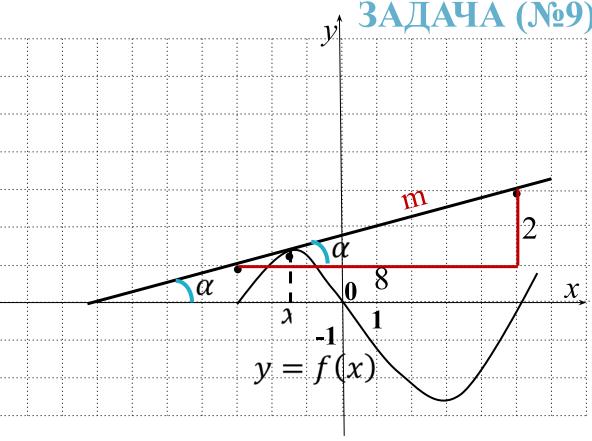
На рисунке изображён график функции y = f(x). Найдите среди точек X_1, X_2, X_3, X_4, X_5 и х₆ те точки, в которых производная функции f(x) отрицательна. В ответ запишите количество найденных точек.


Решение: Производная функции в точке отрицательна тогда и только тогда, когда эта точка является точкой убывания данной функции.

Этому условию на рисунке удовлетворяют точки х₂ и х₄.

Следовательно, количество найденных точек равно 2.

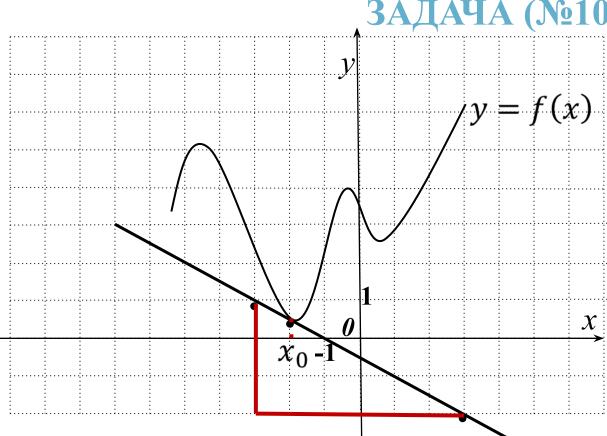
Ответ: 2.


ЗАДАЧА (№8)

На рисунке изображён график функции y=f(x), определённой на интервале (-1;13). Определите количество целых точек, в которых производная функции положительна.

Решение: Производная функции в точке положительна тогда и только тогда, когда эта точка является точкой возрастания данной функции. Этому условию на рисунке удовлетворяют точки х₃ и х₆. Следовательно, количество найденных точек равно 2.

Ответ: 2.


На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

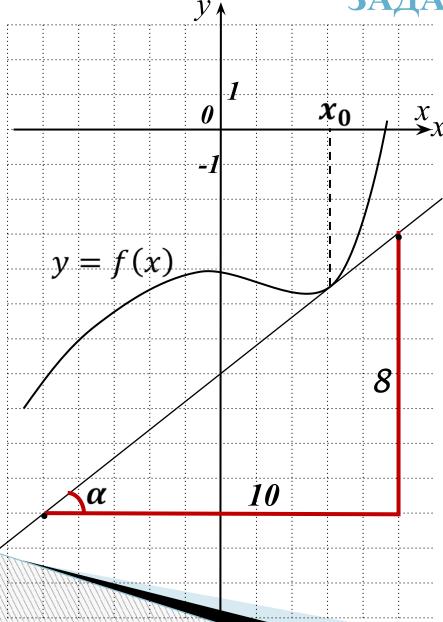
Решение: значение производной функции y = f(x) в точке x_0 -это угловой коэффициент

касательной, проведённой к графику этой функции в данной точке.

Угловой коэффициент касательной $k = tg\alpha = \frac{2}{8} = 0.25$.

Ответ: 0,25

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции x **Решение:** значение

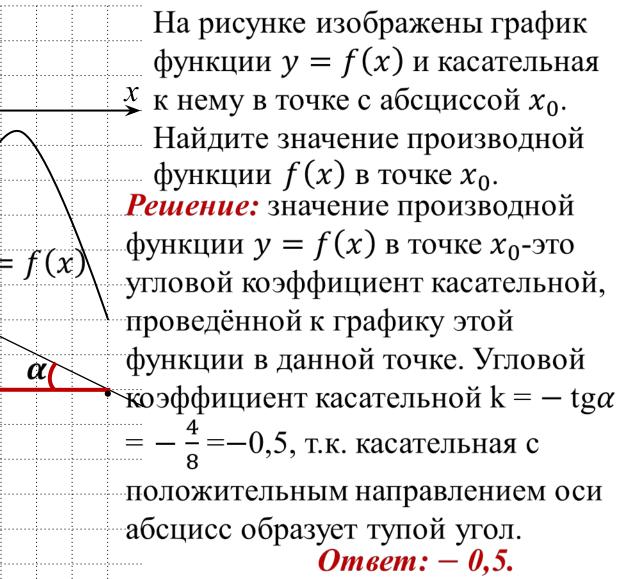

производной функции y = f(x) в точке x_0 -это угловой коэффициент

касательной, проведённой к графику этой функции в данной точке. Угловой коэффициент касательной $k = -tg\alpha = -\frac{3}{6} = -0.5$, т.к.

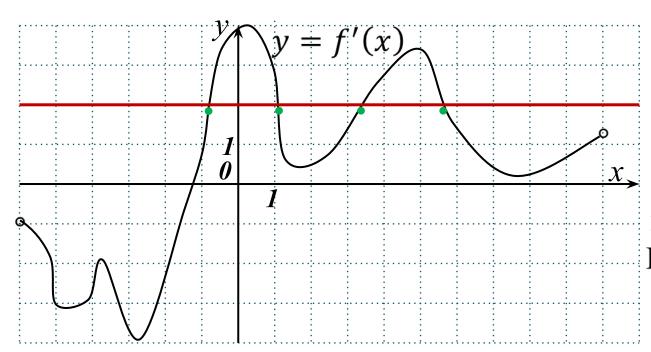
касательная с положительным направлением оси абсцисс образует Om em: -0.5

тупой угол.

ЗАДАЧА (№11)


На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в

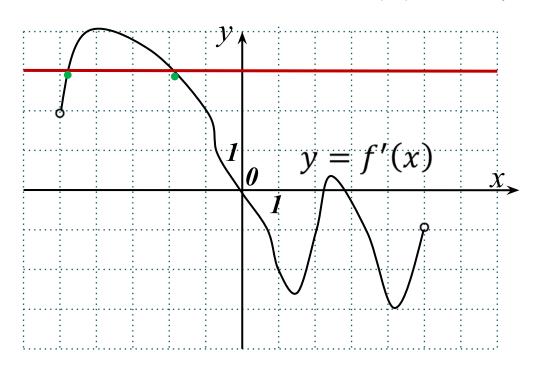
Решение: значение производной функции y = f(x) в точке x_0 -это угловой коэффициент касательной, проведённой к графику этой функции в данной точке. Угловой коэффициент касательной $k = tg\alpha = \frac{8}{10} = 0.8$, т.к. касательная с положительным направлением оси абсцисс образует острый и гол. 8.



 $\boldsymbol{x_0}$

8

ЗАДАЧА (№13)

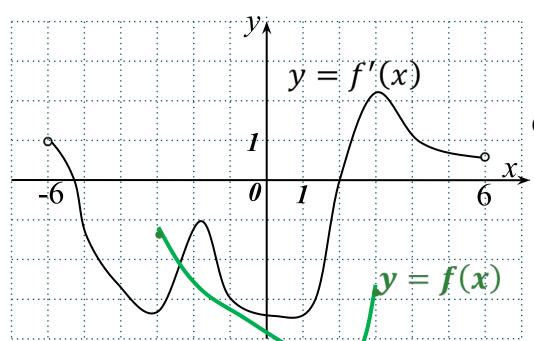

На рисунке изображён график производной функции f(x), определённой на интервале (-6; 10). Найдите количество точек, в которых касательная к

графику функции f(x) параллельна прямой y = 2x + 5 или совпадает с ней.

Решение: Если касательная к графику функции параллельна прямой y = 2x + 5 или совпадает с ней, то её угловой коэффициент равен 2, \Rightarrow нужно найти количество точек, в которых f'(x) = 2. Определяем, что таких точек будет 4.

Ответ: 4.

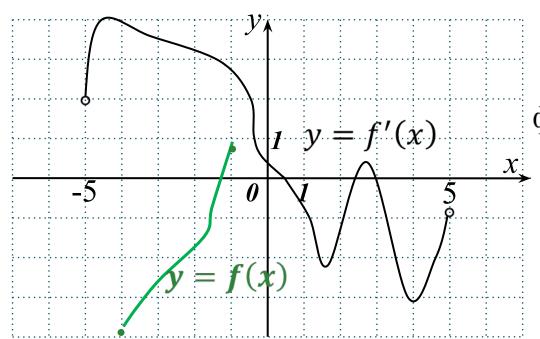
ЗАДАЧА (№14)



На рисунке изображён график производной функцииf(x), определённой на интервале (-5; 5). Найдите количество точек, в которых касательная к графику функции f(x)параллельна прямой y = 3x - 8 или совпадает с ней.

Решение: Если касательная к графику функции параллельна прямой y = 3x - 8 или совпадает с ней, то её угловой коэффициент равен 3, \Rightarrow , нужно найти количество точек, в которых f'(x) = 3. Определяем, что таких точек будет 2.

Ответ: 2.


ЗАДАЧА (№15)

На рисунке изображён график производной функции f(x), определённой на интервале (-6; 6). В какой точке отрезка [-3; 3] f(x) принимает наименьшее значение?

Решение: По чертежу замечаем, что на промежутке [-3; 2] производная функции f(x) отрицательна, ⇒, сама функция убывает. На промежутке [2; 3] производная положительна, ⇒, сама функция возрастает, поэтому наименьшее значение достигается в точке x = 2. **Ответ: 2.**

ЗАДАЧА (№16)

На рисунке изображён график производной функции f(x), определённой на интервале (-5; 5). В какой точке отрезка [-4; -1] f(x) принимает наибольшее значение?

Решение: По чертежу замечаем, что на всём промежутке [-4; -1] производная функции f(x) положительна, ⇒, сама функция возрастает.

Значит, наибольшее значение функцией достигается в правом конце отрезка, т. е. в точке x = -1. *Ответ: -1.*

ЗАДАЧА (№17)

17а) Прямая y = 6x + 9 параллельна касательной к графику функции $y = x^2 + 7x - 6$. Найдите абсциссу точки касания

Решение: Значение производной функции в точке касания равно угловому коэффициенту касательной, которая параллельна прямой y = 6x + 9, т.е. $y' = 6 \Rightarrow 2x + 7 = 6$, x = -0.5.

Omeem: -0.5.

17б) Прямая y = -4x - 8 является касательной к графику функции $y = x^3 - 3x^2 - x - 9$. Найдите абсциссу точки касания **Решение:** Значение производной функции в точке касания равно угловому коэффициенту касательной, т.е. $y' = -4 \Rightarrow 3x^2 - 6x - 1 = -4 \Leftrightarrow 3x^2 - 6x + 3 = 0 \Leftrightarrow (x - 1)^2 = 0, x = 1$.

Ответ: 1.

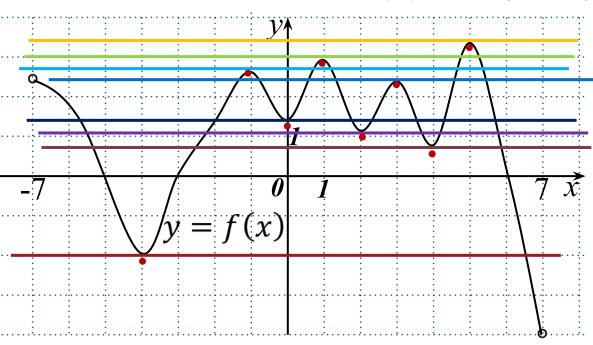
ЗАДАЧА (№17)

17в) Прямая y = 5x + 14 является касательной к графику функции $y = x^3 - 4x^2 + 9x + 14$. Найдите абсциссу точки касания

Решение: Значение производной функции в точке касания равно угловому коэффициенту касательной, т.е. $y' = 5 \Rightarrow$

$$3x^2 - 8x + 9 = 5$$
, $3x^2 - 8x + 4 = 0$, r.e. $x = 2$; $\frac{2}{3}$.

касания =2.

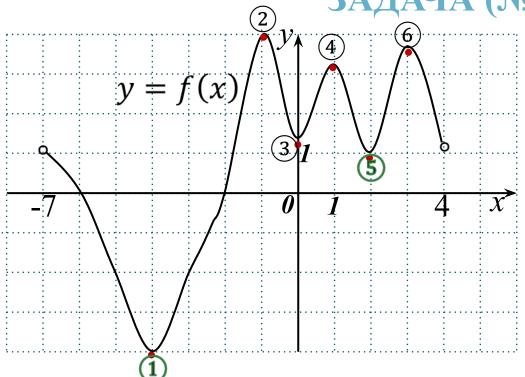

Вычислим значения функции в этих точках и проверим, удовлетворяют ли они уравнению касательной:

1)
$$y(2) = 2^3 - 4 \cdot 2^2 + 9 \cdot 2 + 14 = 24$$
 и $5 \cdot 2 + 14 = 24 \Rightarrow x = 2$ удовлетворяет,

2)
$$y\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^3 - 4 \cdot \left(\frac{2}{3}\right)^2 + 9 \cdot \frac{2}{3} + 14 = \frac{824}{27}$$
, но $\frac{824}{27} \neq 5 \cdot \frac{2}{3} + 14 \Rightarrow$ $x = \frac{2}{3}$ не удовлетворяет. Т.е. искомая абсцисса точки

Ответ: 2.

ЗАДАЧА (№18)

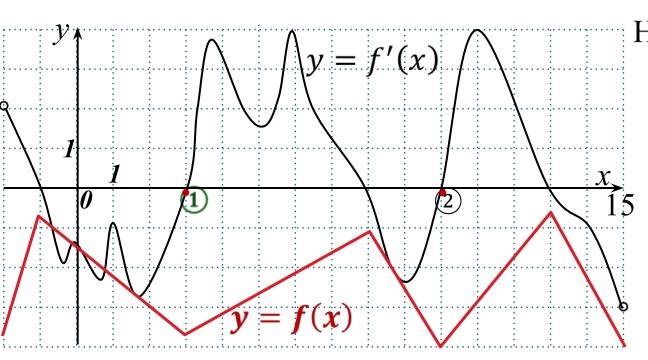

На рисунке изображён график функции y = f(x), определённой на интервале (-7;7). Найдите количество точек, в которых касательная к графику функции параллельна прямой

y = 13. **Решение:** Прямая y = 13 параллельна оси абсцисс, ⇒, если касательная к графику функции ей параллельна, то она тоже параллельна оси Ox. По графику определяем количество точек, в которых касательные параллельны оси Ox.

Количество таких точек равно 8.

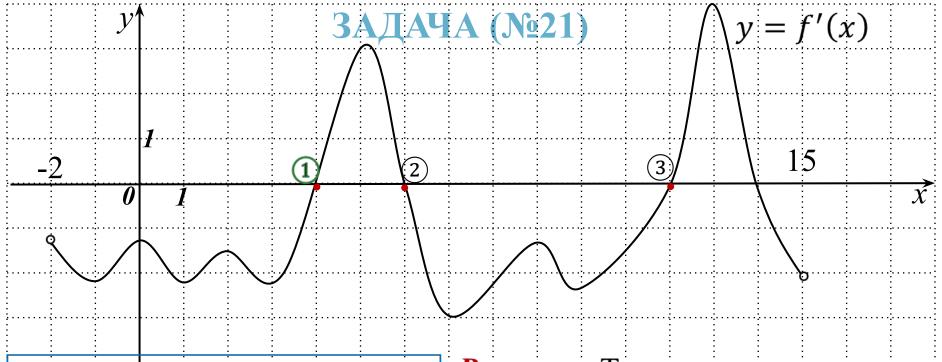
Ответ: 8.

ЗАДАЧА (№19)


На рисунке изображён график функции y = f(x), определённой на интервале (-7; 4). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = -17.

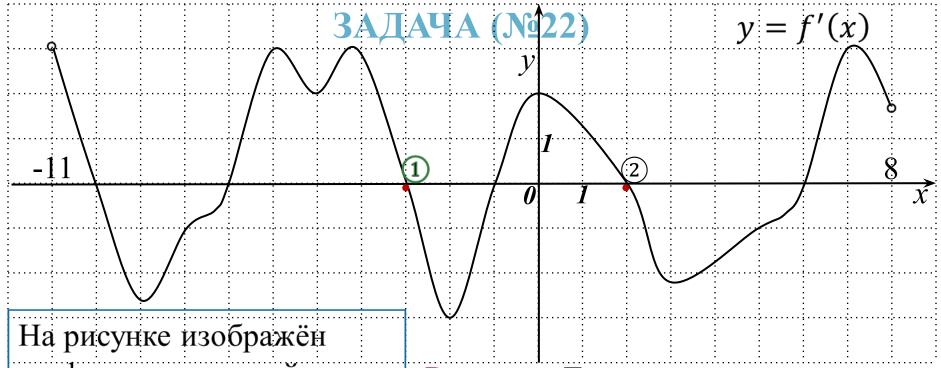
Решение: Прямая y = -17 — горизонтальная, ⇒, если касательная к графику функции ей параллельна, то она тоже горизонтальна. Определим по рисунку количество точек с горизонтальной касательной.

Количество таких точек равно 6.


Ответ: 6.

ЗАДАЧА (№20)

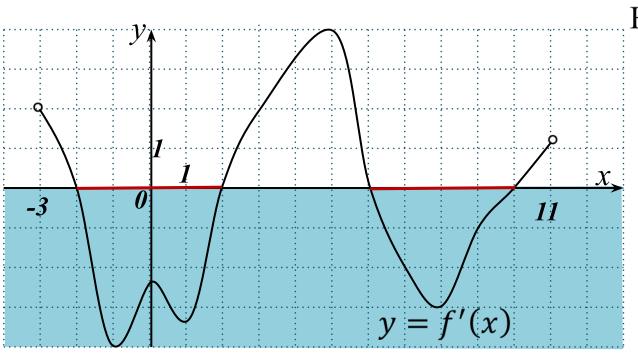
На рисунке изображён график производной функции f(x), определённой на интервале (-2; 15). Найдите количество точек минимума функции f(x) на отрезке [0; 12].


Решение: Точка x_0 - точка минимума функции, либо если $f'(x_0) = 0$ и в этой точке происходит смена знака производной с «-» на «+», либо в том случае, когда производная функции в этой точке не существует. По рисунку определяем, что таких точек, принадлежащих отрезку [0; 12], две: 3; 10.

На рисунке изображён график производной функции f(x), определённой на интервале (-2; 15). Найдите количество точек экстремума функции f(x) на отрезке [3; 13].

Решение: Точка x_0 - точка экстремума функции, либо если $f'(x_0) = 0$, либо в том случае, когда производная функции в этой точке не существует. По рисунку определяем, что таких точек, принадлежащих отрезку [3; 13], три: 4; 6; 12. **Ответ: 3.**

2

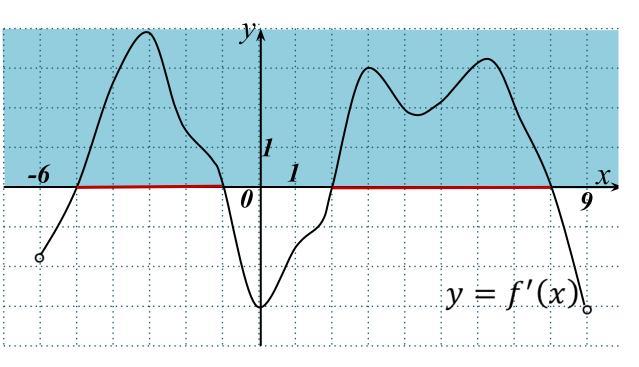


[-8; 7], две: -3; 2.

На рисунке изображён график производной функции f(x), определённой на интервале (-11;8). Найдите количество точек максимума функции f(x) на отрезке [-8;7].

Решение: Точка x_0 - точка максимума функции, либо если $f'(x_0) = 0$ и в этой точке происходит смена знака производной с «+» на «-», либо в случае, когда производная функции в этой точке не существует. По рисунку определяем, что таких точек, принадлежащих отрезку

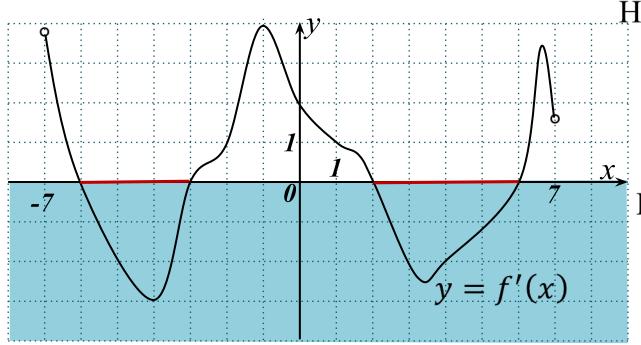
ЗАДАЧА (№23)


На рисунке изображён график производной функцииf(x), определённой на интервале (-3; 11). Найдите промежутки убывания функции f(x). B ответе укажите длину наибольшего из них.

Решение: На всём промежутке убывания функции f(x) её производная неположительна.

На рисунке это промежутки: (-2; 2), (8; 10). Оба промежутка имеют длину, равную 4, так как 2 - (-2) = 10 - 6 = 4.

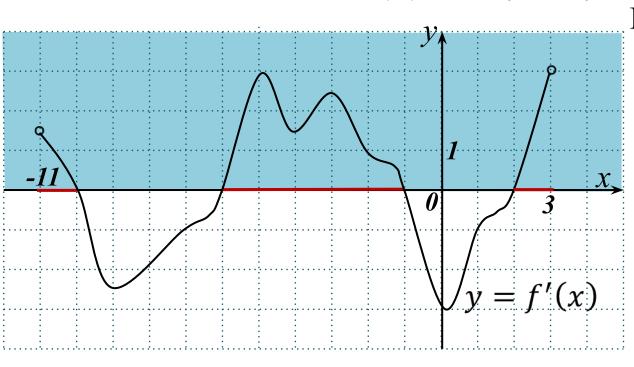
Ответ: 4.


ЗАДАЧА (№24)

Решение: На всём промежутке возрастания функции f(x) её производная неотрицательна. На рисунке это промежутки: (-5; -1), (2; 8).

Наибольшую длину из них имеет промежуток (2; 8), длина которой равна 6, т.к. 8 - 2 = 6.

ЗАДАЧА (№25)

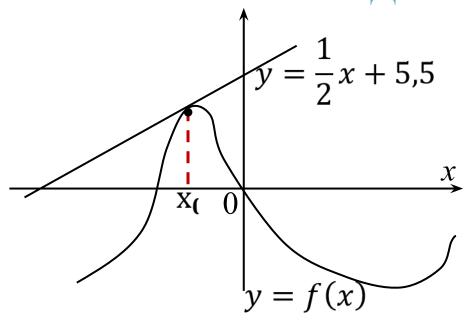


На рисунке изображён график производной функцииf(x), определённой на интервале (-7; 7). Найдите промежутки убывания функции f(x). B ответе укажите длину наибольшего из них.

Решение: На всём промежутке убывания функции f(x) её производная неположительна.

На рисунке это промежутки: (-6; -3), (2; 6). Наибольшую длину из них имеет промежуток (2; 6), так как 6 - 2 = 4. *Ответ:* 4.

ЗАДАЧА (№26)

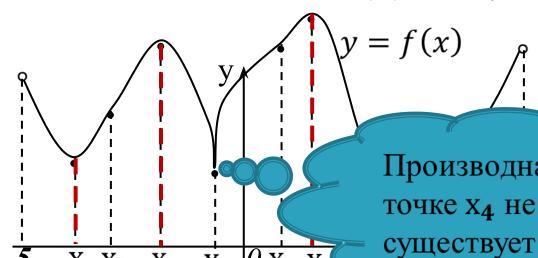


На рисунке изображён график производной функцииf(x), определённой на интервале (-11; 3). Найдите промежутки возрастания функции f(x). B ответе укажите длину наибольшего из них.

Решение: На всём промежутке возрастания функции f(x) её производная неотрицательна. На рисунке это промежутки: (-11; -10), (-6; -1), (2; 3).

Наибольшую длину из них имеет промежуток(-6; -1), длина которой равна 5, т.к. -1 - (-6) = 5.

ЗАДАЧА (№27)


На рисунке изображен график функции y = f(x) и касательная к этому графику, проведённая в точке x_0 . Уравнение касательной показано на рисунке. Найдите значение производной функции y = 4f(x) + 7 в точке x_0 .

Решение: $y'(x) = (4f(x) + 7)' = 4 \cdot f'(x)$; в точке x_0 значение производной функции равно угловому коэффициенту касательной к графику функции: $f'(x_0) = \frac{1}{2}$, \Rightarrow

$$y'(x_0) = 4 \cdot f'(x_0) = 4 \cdot \frac{1}{2} = 2.$$

Ответ: 2.

ЗАДАЧА (№28)

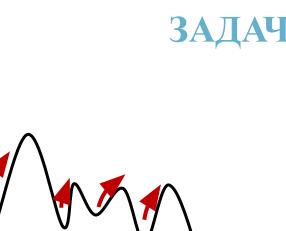
 $0 \times x_i \times x_i$

 $\overline{X_1} X_2$

X:

X

Функция y = f(x) определена на интервале (-5; 6). На рисунке трображён график


Производная в дии y = f(x). точке x_4 не е среди точек x_1 ,

 $_{4}, x_{5}, x_{6}, x_{7}$ Te

, в которых

производная функции равна нулю. В ответ запишите количество найденных точек.

Решение: Производная функции в некоторой точке равна нулю тогда и только тогда, когда касательная к графику функции, проведённая в этой точке, горизонтальна. Этому условию удовлетворяют точки x_1 , x_3 , x_6 и x_7 , \Rightarrow количество найденных точек равно 4.

Материальная точка М начинает движение из точки А и движется на протяжении 12 секунд. График показывает, как менялось расстояние от точки М со временем. На оси абсцисс откладывается время t в секундах,

на оси ординат – расстояние s в метрах. Определите, сколько раз за время движения скорость точки М обращалась в ноль (начало и конец движения не учитывайте).

Решение: После начала движения, примерно через 1 с, график достиг верхней точки на этом участке, затем график уходит вниз, ⇒ точка остановилась и стала двигаться назад. Значит каждая вершина и впадина графика означает перемену направления движения точки М, т.е. в этих точках скорость равна 0. Всего на графике 11вершимет: 11. впадин, не считая в зада и конца движения.