Стандартные серии цифровых интегральных микросхем

Выпускаемые интегральные микросхемы подразделяются на серии, отличающиеся технологиями изготовления, статическими и динамическими параметрами, функциональным разнообразием входящих в их состав элементов.

Наибольшее распространение получили интегральные микросхемы, выполненные по технологиям ТТЛ, ТТЛШ, к-МОП, п-МОП. Технологии непрерывно совершенствуются с целью увеличения быстродействия, нагрузочной способности, степени интеграции, уменьшения потребляемой мощности и весогабаритных характеристик.

Серии интегральных микросхем, выполненных по технологиям ТТЛ, ТТЛШ (транзисторно транзисторная логика с диодами Шоттки).

Отечественные серии микросхем малой степени интеграции и их зарубежные аналоги, выполненные по этим технологиям, приведены в таблице:

Соответствие отечественных и зарубежных микросхем

Отечественные	Зарубежные	Отечественные	Зарубежные
133	SN54	155	SN74
136	SN5	134,138	SN74L
130	SN54H	131	SN74H
530	SN54S	531	SN74S
533	SN54LS	555	SN74LS
1533	SN54ALS	KP1533	SN74ALS
1530	SN54AS	KP1530	SN74AS

SN74 - обычная (стандартная) ТТЛ-серия;

SN74L - (Low Power) малопотребляющая ТТЛ-серия;

SN74H - (Hi Speed) высокоскоростная серия;

- SN74S (Schottky) ТТЛ-серия на основе диодов Шоттки;
- SN74LS малое потребление с диодами Шоттки;
- SN74ALS (Advanced) усовершенствованная малопотребляющая серия с диодами Шоттки;
- SN74AS улучшенная с диодами Шоттки;
- SN74F (Fast-Fairchild Advanced Schottky) быстродействующая улучшенная с диодами Шоттки.
- Серии SN54 и SN74 отличаются только температурным диапазоном и допустимой величиной отклонения источника питания от номинала

В конце 70-х начале 80-х гг. параллельно с ТТЛ-технологией начала развиваться МОП-технология:

- •n-MOΠ n-MOS (Metal Oxide Semiconductor); p-MOΠ p-MOS;
- •k-MOII c-MOS (Complementary MOS).

Отечественные и зарубежные аналоги МОП-серии сведены в таблице:

Отечественные и зарубежные аналоги МОП-серии

Отечественные серии ИМС	Зарубежные аналоги	Фирма- производитель
1554	54HC74HC	National Semiconductor, Motorola
KP 1554 KP 1594	74 AC 74 ACT	Texas Instruments

До начала 90-х гг. все выпускаемые МОП-серии отличались невысоким быстродействием и низкой нагрузочной способностью. С появлением серии 54 НС/ 74 HC / 1564 (Hi Speed CMOS) появились первые микросхемы, близкие по своим физическим параметрам к 54LS/74LS, а в сериях 54AC/ 74 AC/ КР 1554 (Advanced C-MOS) среднее время задержки на один вентиль уменьшилось до 3,5 нс.

Ещё более высокого быстродействия добились в сериях ВСТ (Ві СМОЅ-Віроlary С-МОЅ - ТТЛ Compatible Input) - технология с размещением биполярных и К-МОП-транзисторов на одном кристалле с уровнями сигналов, совместимыми с ТТЛ.

Результатом постоянной работы по улучшению параметров ИМС стали улучшенные серии ACQ/FCTQ, FCTx/FCTxT, FASTr и др

На сегодняшний день параметры интегральных микросхем, выполненных по МОПтехнологии, уже ничем не уступают ТТЛ, ТТЛШ, а в ряде случаев даже превосходят их по помехоустойчивости, энергопотреблению, быстродействию, но проигрывают в стоимости.

В состав каждой серии входит определённый набор интегральных микросхем различного функционального назначения. По своему функциональному назначению они разбиваются на отдельные группы - логические элементы, триггеры, регистры, счётчики, сумматор и т. д

В состав разных серий могут входить интегральные микросхемы с одинаковым функциональным назначением, но они отличаются своими статическими, динамическими, стоимостными и другими параметрами (характеристиками).

Из-за их взаимной противоречивости невозможно выбрать одну серию микросхем с наивысшими показателями всех параметров. Поэтому серии интегральных микросхем постоянно совершенствуются.

Спасибо за внимание