
Карбоновые Кислоты.

Открытие кислот:

Благодаря работам известного шведского химика Карла Вильгельма Шееле к концу 18 века стало известно около десяти различных органических кислот. Он выделил и описал щавелевую, лимонную, молочную и другие кислоты.

Интересные исторические факты, связанные с органическими кислотами:

В 1714 г. по указу Петра I в Петербурге был заложен аптекарский сад. Там выращивали лекарственные растения, снабжая ими аптеки или перерабатывая их на лекарства. Так вот, листья одного из таких растений, помещенные в молоко, предохраняют его от скисания. Свежее мясо и рыба, переложенные этим растением, дольше сохраняются. Из его корней можно получить желтый краситель. Из волокон можно изготовить сети, не гниющие в воде. Листья – неистощимая основа для фантазии хозяйки по приготовлению здоровой и полезной пищи. Мы знаем это растение по сказке Андерсена. Личный опыт общения с этим растением способен довести до слез. Наконец, это растение узнают даже слепые. Это – ...Назовите это растение!

Карбоновые кислоты в природе:

Есть ли кислоты опасные для здоровья человека?

Да, например: ноос-соон

Щавелевая кислота.

Она широко распространена в природе: содержится в щавеле, смородине, апельсинах, малине.

Но её <u>не</u> используют в пищевой отрасли промышленности. Эта кислота сильнее уксусной в 200 раз и может разъедать посуду.

Её соли могут откладываться в организме человека, образуя камни.

Карбоновые кислоты в природе:

Муравьиная кислота впервые была выделена в XVII веке из красных лесных муравьев. Содержится также в соке жгучей крапивы. Безводная муравьиная кислота — бесцветная жидкость с острым запахом и жгучим вкусом, вызывающая ожоги на коже. Применяется в текстильной промышленности в качестве протравы при крашении тканей, для дубления кож, а также для различных синтезов.

Молекулярная и структурная формулы	Модель	Нахождение в природе (продукты, в которых содержится)	Примеры
НСООН		Содержится в хвое, крапиве, фруктах, едких выделениях пчел и муравьев	

Карбоновые кислоты в природе:

Уксусная кислота широко распространена в природе – содержится в выделениях животных (моче, желчи, испражнениях), в растениях (в зеленых листьях). Образуется при брожении, гниении, скисании вина, пива, содержится в кислом молоке и сыре. Температура плавления безводной уксусной кислоты + 16,5°C, кристаллы ее прозрачны как лед, поэтому ее называют ледяной уксусной кислотой. Впервые получена в конце XVIII века русским ученым Т. Е. Ловицем. Натуральный уксус содержит около 5% уксусной кислоты.

Молекулярная и структурная формулы	Модель	Нахождение в природе (продукты, в которых содержится)	Примеры
H-C-C H-C-H		Содержится в растениях (в зеленых листьях), в выделениях животных (моче, желчи), образуется при	
ноп		гниении и брожении (в кислом молоке, сыре, вине).	

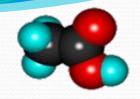
_==

Молекулярная и структурная формулы	Модель	Нахождение в природе (продукты, в которых содержится)	Примеры
C ₂ H ₅ COOH O OH		В природе содержится в древесной смоле, в нефти, образуется при брожении утлеводов	

Молекулярная и структурная формулы	Модель	Нахождение в природе (продукты, в которых содержится)	Примеры
C ₃ H ₇ COOH O OH		Содержится в сливочном масле и в нефти	MACIO KPECTBAHCKOE

707122EEE

_==


Молекулярная и структурная формула	Модель	Нахождение в природе (продукты, в которых содержится)	Примеры
C ₄ H ₉ COOH		В корне валерианы аптечной	W W W W W W W W W W W W W W W W W W W

Молекулярная и структурная формулы	Модель	Нахождение в природе (продукты, в которых содержится)	Примеры
C ₅ H ₁₁ COOH		В сливочном масле и в нефти	

Структурная формула	Модель	Нахождение в природе (продукты, в которых содержится)	Примеры
C8H ₁₇ COOH		В летучем масле герани, в сивушном масле кормовой свеклы и картофеля, в сильно прогорклых жирах, в нефти.	

Структурная формула	Модель	Нахождение в природе (продукты, в которых содержится)	Примеры
C ₉ H ₁₉ COOH		Содержится в кокосовом масле	

Карбоновые кислоты-

Это органические вещества, в молекулах которых имеется одна или несколько карбоксильных групп (- COOH).

Предельные одноосновные карбоновые кислоты

 можно рассматривать как производные алканов, в молекулах которых один атом водорода заменен на функциональную группу - СООН (карбоксильная группа).

Общая формула этих кислот: CnH2n+1 COOH

Одноосновные карбоновые кислоты можно представить как:

R-COOH

где R – углеводородный радикал.(CH_3 -),

- СООН функциональная группа карбоновых кислот.
- •Как можно объяснить, что высшие карбоновые кислоты (С17) являются твёрдыми веществами, а муравьиная, уксусная кислота это жидкости?

Ответ:

•Чем больше углеводородный радикал, тем меньше растворимость кислот в воде.

Номенклатура карбоновых кислот:

Формула	Название кислоты R-COOH		Название остатка
. оруула	систематическое	тривиальное	RCOO-
НСООН	метановая	муравьиная	формиат
CH ₃ COOH	этановая	уксусная	ацетат
C ₂ H ₅ COOH	пропановая	пропионовая	пропионат
C ₃ H ₇ COOH	бутановая	масляная	бутират
C ₄ H ₉ COOH	пентановая	валерьяновая	валерат
C ₅ H ₁₁ COOH	гексановая	капроновая	капрат
C ₁₅ H ₃₁ COOH	гексадекановая	пальмитиновая	пальмитат
C ₁₇ H ₃₅ COOH	октадекановая	стеариновая	стеарат
C ₆ H ₅ COOH	бензолкарбоновая	бензойная	бензоат
CH ₂ =CH-COOH	пропеновая	акриловая	акрилат

Классификация:

Карбоновые кислоты

•Монокарбоновые кислоты.

НСООН	метановая	муравьиная
CH ₃ COOH	этановая	уксусная
C ₂ H ₅ COOH	пропановая	пропионовая
C ₃ H ₇ COOH	бутановая	масляная
C ₁₅ H ₃₁ COOH	гексадекановая	пальмитиновая
C ₁₇ H ₃₅ COOH	октадекановая	стеариновая

Карбоновые кислоты.

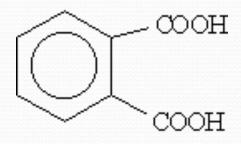
•Дикарбоновые кислоты

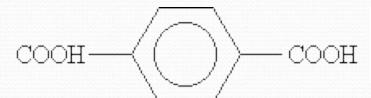
HOOC-COO H

Этандиовая или Щавелевая кислота

HOOC-CH₂ -COOH

Пропандиовая кислота или Малоновая.


Бутандиовая кислота или Янтарная. HOOC-CH₂ -CH₂ -COOH



Дикарбоновые кислоты

•Ароматические

Бензол-1,2-дикарбоновая или Фталевая

Бензол-1,4-дикарбоновая или Терефталевая

Алгоритм названия карбоновых кислот:

- 1. Находим главную цепь атомов углерода и нумеруем её, начиная с карбоксильной группы.
- 2. Указываем положение заместителей и их название (названия).
- 3. После корня, указывающего число атомов углерода в цепи, идет суффикс «-овая» кислота.
- 4. Если карбоксильных групп несколько, то перед «- овая» ставится числительное (-ди, три...)

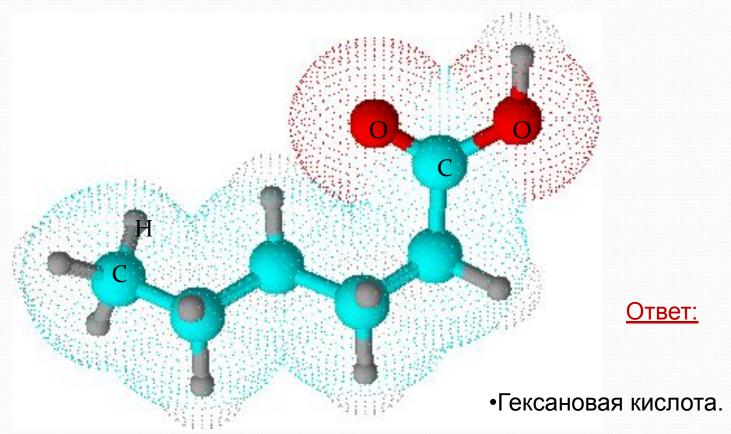
Пример:

$$\overset{4}{\text{CH}_3} \longrightarrow \overset{3}{\text{CH}} \longrightarrow \overset{2}{\text{CH}_2} \longrightarrow \overset{1}{\text{COOH}}$$

$$\overset{4}{\text{CH}_3} \longrightarrow \overset{3}{\text{CH}_2} \longrightarrow \overset{1}{\text{COOH}}$$

$$\overset{1}{\text{CH}_3} \longrightarrow \overset{2}{\text{CH}_2} \longrightarrow \overset{1}{\text{COOH}}$$

3- метилбутан + -овая = 3-метилбутановая кислота

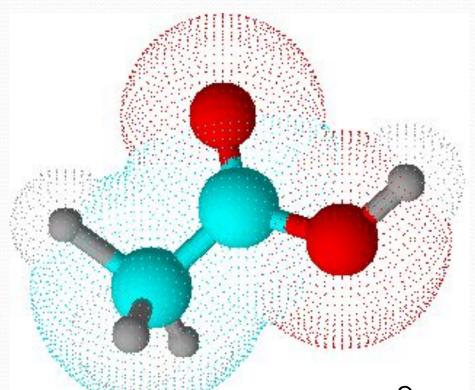

Алгоритм записи формул карбоновых кислот:

- 1. Выделить корень слова на основании, которого записать углеродный скелет в состав, которого входит карбоксильная группа.
- 2. Нумеруем атомы углерода, начиная с карбоксильной группы.
- 3. Указываем заместители согласно нумерации.
- 4. Необходимо дописать недостающие атомы водорода (углерод четырёхвалентен).
- 5. Проверить правильность записи формулы.

Пример: 2-метилбутановая кислота.

Назовите вещество, к какому классу органических веществ оно принадлежит?

• Класс предельных одноосновных карбоновых кислот.



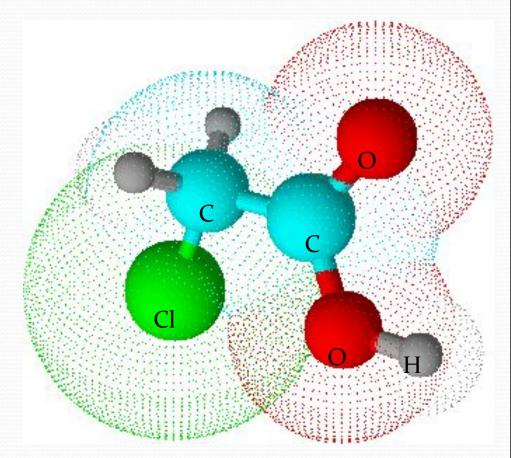
углерод

водород

Назовите вещество, к какому классу органических веществ оно принадлежит?

Ответ:

- •Этановая или уксусная кислота.
- •Класс предельных одноосновных карбоновых кислот.



Назовите это вещество:

•Что вы можете сказать о силе этой кислоты?

Ответ:

•Хлоруксусная кислота или хлорэтановая кислота.

•Эта кислота сильнее уксусной кислоты.

Какая из кислот сильнее?

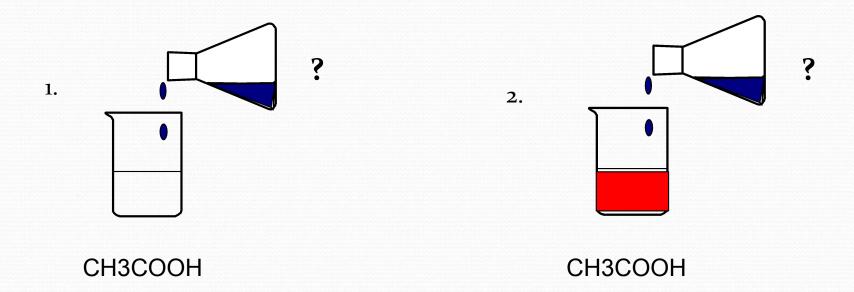
$$CH3 - C = O \\ OH + Cl_2 - C = CH_2 - C = O \\ OH + HCl$$
 Уксусная кислота

$$CH3 - C = O \oplus CH_2 - C = O \oplus CH_2$$

Ответ:

•Хлоруксусная кислота сильнее уксусной, так как за счет атома хлора происходит перераспределение электронной плотности в молекуле (смотри схему) и водород в виде протона отщепляется легче, а, значит, кислота будет более активной.

Структурная формула карбоксильной группы имеет вид:


$$-\dot{c}$$

•Какие свойства можно предположить у карбоновых кислот?

Свойства кислот:

Растворы карбоновых кислот действуют на индикаторы.

- •Назовите индикатор, который так изменяет цвет в кислой среде?
- •За счёт чего кислоты проявляют это свойство? •Лакмус

 $CH_3COOH F CH_3COO^{-\delta} + H^{+\delta}$

•При диссоциации образуется ион водорода, который определяет кислотные свойства молекулы.

Физические свойства карбоновых кислот.

•Гомологический ряд альдегидов начинается с двух газообразных веществ (при комнатной температуре), а среди карбоновых кислот газов нет. С чем это связано?

$$R-C = 0 ... H-0 \ S+S-C-R \ O-H ... O = 0$$

<u>Ответ</u>: Молекулы спиртов и карбоновых кислот связаны друг с другом водородными связями и образуют цепочки из молекул (ассоциаты).

Тестирование:

	1. Какие из названных кислот являются органическими?	
	α) муравьиная; б) азотная;	Α,Γ
	в) серная; г) лимонная.	2 2)2
	2. <u>Почему болезненны укусы муравьев?</u>	
	а) обжигают муравьиной кислотой;	Α
	б) выделяют яд;	71
	в) разъедают муравьиной щелочью;	
	г) вонзают острые зубчики.	
	3. <u>Как называют соли карбоновых кислот?</u>	
	а) ацетаты; б) бустилаты;	A,B
	в) пропилаты; г) постулаты.	
	4. <u>Какого названия кислоты не существует?</u>	
	а) лимонная; б) щавелевая;	Γ
	в) винная; г) виноградная.	
	5. <u>Какие кислоты являются витаминами?</u>	
	а) никотиновая; б) аскорбиновая;	А,Б
1	в) ацетилсалициловая; г) янтарная.	

Выполните задания:

1.Выпишите формулы карбоновых кислот и дайте им названия.

$$C_6H_5-CH_2-OH$$

Бутановая, масляная

$$CH_3 - O - C_2H_5$$

Метановая, муравьиная

Октадекановая, стеариновая

Этановая, уксусная

2. Напишите формулы карбоновых кислот:

3-метилпентановая кислота, 4-этилгептановая кислота.

Ответ на задание 2:

3- метилпентановая кислота

5
 4 3 2 1 1 2 $^{-1}$ $^{-$

4- этилгептановая кислота

$$^{7}\text{CH}_{3}$$
 $-\overset{6}{\text{C}}\text{H}_{2}$ $-\overset{5}{\text{C}}\text{H}_{2}$ $-\overset{4}{\text{C}}\text{H}(\text{C}_{2}\text{H}_{5})$ $-\overset{3}{\text{C}}\text{H}_{2}$ $-\overset{2}{\text{C}}\text{H}_{2}$ $-\overset{1}{\text{C}}\text{OOH}$